

Prosecká 811/76a 190 00 Prague Czech Republic eota@tzus.cz

European Technical Assessment

ETA 20/0641 of 28/12/2023

Technical Assessment Body issuing the E for Construction Prague	TA: Technical and Test Institute
Trade name of the construction product	LE-A4 LE-ZNA4 LE-DA4
Product family to which the construction product belongs	Product area code: 33 Torque controlled expansion anchor for use in cracked and uncracked concrete
Manufacturer	Klimas Sp. z o.o. Kuźnica Kiedrzyńska, UI. Wincentego Witosa 135/137, 42-233 Mykanów, Poland
Manufacturing plant	PLANT1, PLANT2, POLAND
This European Technical Assessment contains	17 pages including 15 Annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of	EAD 330232-01-0601 Mechanical fasteners for use in concrete
This version replaces	ETA 20/0641 issued on 18/03/2023

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body - Technical and Test Institute for Construction Prague. Any partial reproduction has to be identified as such.

1. Technical description of the product

The LE-A4, LE-ZNA4, LE-DA4 are through-fixing torque-controlled expansion anchors in sizes of M8, M10, M12 and M16. Each type comprises a nut, bolt, washer and expansion sleeve.

The anchors LE-A4 are made from stainless steel.

The anchors LE-ZNA4 and LE-DA4 are made from carbon steel with zinc coating.

The anchor is installed in a drilled hole; tightening the nut draws the cone into the sleeve. The expansion of this sleeve applies the anchorage.

The installed anchor is shown in Annex A 1.

2. Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance (static and quasi-static loading)	See Annex C 1 to C 3
Displacement	See Annex C 1 to C 3
Characteristic resistance (seismic performance category C1)	See Annex C 4

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1 according to EN 13501-1
Resistance to fire	See Annex C 5 and C 6

4. Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base

According to the Decision 96/582/EC of the European Commission¹, the system 1 of assessment verification of constancy of performance (see Annex V to the Regulation (EU) No 305/2011) apply.

5. Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Technical and Test Institute for Construction Prague.

Issued in Prague on 28.12.2023

By

Ing. Jiří Studnička, Ph.D.

Head of the Technical Assessment Body

¹ Official Journal of the European Communities L 254 of 08.10.1996

Table A1 - Materials	
Component	Material
LE-A4	
Anchor body	Stainles steel A4
Expansion sleeve	Stainles steel A4
Hexagonal nut	Stainles steel A4 DIN 934 / EN ISO 898-2
Washer	Stainles steel A4 DIN 125 or EN ISO 7089 / DIN 9021A or EN ISO 7093
LE-ZNA4, LE-DA4	
Anchor body	Carbon steel
Expansion sleeve	Stainles steel A4
Hexagonal nut	Steel class 8 DIN 934 / EN ISO 898-2
Washer	Steel DIN 125 or EN ISO 7089 / DIN 9021A or EN ISO 7093
Protection	LE-ZNA4 - Zinc coating (≥ 5µm); electroplated acc. to EN ISO 4042 LE-DA4 - flake zinc (≥ 8µm) acc. to ISO 2178:2016

Table A2 – Marking

Parameters			M8			M10		M12	N	116
Bolt length:	L	[mm]	60÷255			85÷255	8	35÷305	105	5÷345
Width torque wrench:	SW	[mm]	13			17		19		24
		ł	Head Bolt N	Marki	ing		·			
Bolt length [mm] L <u>></u>	20	65	77	90	0	103	115	128	141	153
Head marking	В	С	D	E		F	G	н	I	J
Bolt length [mm] L <u>></u>	166	178	191	20)4	217	230	242	255	281
Head marking	к	L	М	N	l	0	Р	Q	R	S

LE-A4, LE-ZNA4, LE-DA4	
Product description Materials	Annex A 2
Marking	

Specifications of intended use

Anchorages subject to:

- Static and quasi-static load
- Fire exposure
- Seismic performance category C1

Base materials

- Cracked or uncracked concrete.
- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum and C50/60 at maximum according EN 206:2013+A1:2016

Use conditions (Environmental conditions)

- Structures subject to dry internal conditions (LE-ZNA4, LE-DA4, LE-A4)
- Structures subject to external atmospheric exposure and to permanently damp internal condition, use according EN 1993-1-4:2006 + A1:2015, corresponding to corrosion resistance class: CRC III: only LE-A4

Design:

- The anchorages are designed in accordance with the EN 1992-4 under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings.
- Anchorages under fire exposure have to be designed in accordance with EN 1992-4.
- Anchorages under seismic actions have to be designed in accordance with EN 1992-4.

Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Use of the anchor only as supplied by the manufacturer without exchanging any components of the anchor.
- Anchor installation in accordance with the manufacturer's specifications and drawings using the appropriate tools.
- Effective anchoring depth, edge distance and spacing not less than the specified values without minus tolerance.
- In case of aborted drill hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application.

LE-A4, LE-ZNA4, LE-DA4	
Intended use Specifications	Annex B 1

Table B1 - Installation par	ramete	ers				
Installation parame	ers		M8	M10	M12	M16
drill diameter:	d _o	[mm]	8	10	12	16
Fixture clearance hole diameter:	d _f	[mm]	10	12	14	18
nominal torque:	T _{inst}	[Nm]	20	30	50	100
Width torque wrench:	SW	[mm]	13	17	19	24
		:	Standard embedr	nent		
drill depth:	h₁	[mm]	52	74	88	106
embedment depth:	h _{nom}	[mm]	47	69	80	98
effective depth:	h _{ef}	[mm]	40	60	70	85
			Reduced embedr	nent		
drill depth:	h₁	[mm]	-	54	68	86
embedment depth:	h _{nom}	[mm]	-	49	60	78
effective depth:	h _{ef}	[mm]	-	40	50	65
			h, h,	h _{min.}		Ø d°

LE-A4, LE-ZNA4, LE-DA4
Intended use
Installation parameters
Annex B 2

Installation parameters			M8	M10	M12	M16
		S	tandard embed	ment		
effective depth:	h _{ef}	[mm]	40	60	70	85
Minimum thickness of concrete member:	h _{min}	[mm]	100	120	160	170
Minimum allowable spacing:	S _{min}	[mm]	35	40	50	65
	for c ≥	[mm]		According to	o Annex B6	1
Minimum allowable edge	C _{min}	[mm]	40	45	55	65
distance:	for s ≥	[mm]	According to Annex B6			
Minimum splitting area (uncracked concrete)	$A_{\text{sp,req}}$	[mm ²]	23933	27707	36513	52238
Vinimum splitting area (cracked concrete)	A _{sp,req}	[mm ²]	19494	22379	29113	41138

(unclacked concrete)						
Minimum splitting area (cracked concrete)	$A_{sp,req}$	[mm ²]	19494	22379	29113	41138
			Reduced embedr	nent		
effective depth:	h _{ef}	[mm]	-	40	50	65
Minimum thickness of concrete member:	h _{min}	[mm]	-	100	100	130
Minimum allowable spacing:	S _{min}	[mm]	-	40	50	65
	for c ≥		-	Acc	ording to Annex I	36
Minimum allowable edge	C _{min}	[mm]	-	45	55	65
distance:	for s ≥		-	Acc	ording to Annex I	36
Minimum splitting area (uncracked concrete)	A _{sp,req}	[mm ²]	-	27707	36513	52238
Minimum splitting area (cracked concrete)	A _{sp,req}	[mm ²]	-	22379	29113	41138

For the calculation of minimum spacing and minimum edge distance of anchors in combination with standard or reduced embedment depth and with different thicknesses of concrete members the following equation shall be fulfilled:

A_{sp,req} < A_{sp,ef}

 $A_{sp,req}$ = required splitting area

 $A_{sp,ef}$ = effective splitting area (according to Annex B6)

LE-A4

Intended use Installation parameters

Page 7 of 17 ETA 20/0641 issued on 28/12/2023 and replacing ETA 20/0641 issued on 18/03/2023

Table B3 - Installation participation	ramete	ers – Mi	inimum spacin	g and edge dis	stance – LE-ZN	NA4	
Installation parame	ters		M8	M10	M12	M16	
		;	Standard embedr	ment			
effective depth:	h _{ef}	[mm]	40	60	70	85	
Minimum thickness of concrete member:	h _{min}	[mm]	100	120	160	170	
Minimum allowable spacing:	S _{min}	S _{min} [mm] 35 40		50	65		
	for c ≥	[mm]	According to Annex B6				
Minimum allowable edge	C _{min}	[mm]	40	45 55			
distance:	for s ≥	[mm]	n] According to Annex B6				
Minimum splitting area (uncracked concrete)	$A_{sp,req}$	[mm ²]	22345	26735	36978	42357	
Minimum splitting area (cracked concrete)	$A_{sp,req}$	[mm ²]	17181	20538	28370	31734	
			Reduced embedr	nent			
effective depth:	h _{ef}	[mm]	-	40	50	65	
Minimum thickness of concrete member:	h _{min}	[mm]	-	100	100	130	
Minimum allowable spacing:	S _{min}	[mm]	-	40	50	65	
	for c ≥		-	According to Annex B6			
Minimum allowable edge	C _{min}	[mm]	-	45	55	65	
distance:	for s ≥		-	Aco	cording to Annex	B6	
Minimum splitting area	A _{sp,req}	[mm ²]	-	26735	36978	42357	

For the calculation of minimum spacing and minimum edge distance of anchors in combination with standard or reduced embedment depth and with different thicknesses of concrete members the following equation shall be fulfilled:

-

20538

28370

31734

A_{sp,req} < A_{sp,ef}

A_{sp,req} = required splitting area A_{sp,ef} = effective splitting area (according to Annex B6)

 $A_{\text{sp,req}}$

[mm²]

(uncracked concrete) Minimum splitting area

(cracked concrete)

LE-ZNA4

Intended use Installation parameters Annex B 4

Page 8 of 17 ETA 20/0641 issued on 28/12/2023 and replacing ETA 20/0641 issued on 18/03/2023

Installation parameters			M8	M10	M12	M16
		ç	Standard embedr	nent		
effective depth:	h _{ef}	[mm]	40	60	70	85
Minimum thickness of concrete member:	h _{min}	[mm]	100	120	160	170
Minimum allowable spacing:	Smin	[mm]	54	82	109	116
Minimum allowable edge distance:	Cmin	[mm]	54	82	109	116
		I	Reduced embedn	nent		
effective depth:	h _{ef}	[mm]	-	40	50	65
Minimum thickness of concrete member:	h _{min}	[mm]	-	100	100	130
Minimum allowable spacing:	Smin	[mm]	-	54	68	88
Minimum allowable edge distance:	Cmin	[mm]	-	54	68	88

LE-ZNA4 Annex B 5 Intended use Annex B 5

Table B6 – Effective splitting area $A_{sp,ef}$ with member thickness $h \le h_{ef} + 1,5 \cdot c$ and $h \ge h_{min}$

Installation instructions		
	Drill a hole of required dia	ameter and depth
x3↓	Clear the hole of drilling of (using blowpump or equiv	lust and debris valent method)
	Lightly tap the throughbol with a hammer, until fixing	t through the fixture into hole g depth is reached
Tins Contraction of the second	Tighten to the recommen	ded torque
LE-A4, LE-ZNA4, LE-DA4		
Intended use Installation instructions		Annex B 7

Size			M8	M10	M12	M16	
STEEL FAILURE - LE-ZNA4, LE-D	A4						
Characteristic resistance –	N	[LNI]	16.0	27.7	20.6	71.0	
reduced part	N _{Rk.s}	[KN]	16,2	27,7	38,0	71,9	
Partial safety factor class:	γ _{M,s}	[-]		1,	57		
STEEL FAILURE - LE-A4							
Characteristic resistance –	NRKS	[kN]	16.7	28.5	39.7	74.0	
reduced part			- ,			,-	
Partial safety factor class:	γ̃M,s	[-]		1,0	52		
PULL OUT FAILURE	1						
uncracked concrete C20/25:	N _{Rk,p}	[kN]	1)	1)	1)	1)	
Characteristic resistance in cracked concrete C20/25:	N _{Rk,p}	[kN]	1)	1)	1)	1)	
Installation safety factor:	γ̃ins	[-]		1,0		1,2	
		C30/37		1,0	04		
Increasing factors for N ⁰ _{Rk,c} :	Ψ。	C40/50	50 1,06				
		C50/60		1,0	08		
CONCRETE CONE FAILURE AND	SPLITT	ING FAIL	URE				
Factor for uncracked concrete:	k _{ucr,N}	[-]		11	,0		
Factor for cracked concrete:	k _{cr,N}	[-]	7,7				
Installation safety factor:	γins	[-]		1,0		1.2	
	S _{cr.N}	[mm]		3 x	h _{ef}	. ,	
Concrete cone failure:	C _{cr.N}	[mm]		1.5	x h _{ef}		
	,	Standard	embedment				
Effective anchorage depth:	h _{ef}	[mm]	40	60	70	85	
Splitting failure:	S _{cr sp}	[mm]		2 x	Corso		
LE-A4	01,00				- 01,50		
Splitting failure:	C _{cr,sp}	[mm]	72	90	105	127,5	
LE-ZNA4						,	
Splitting failure:	C _{cr,sp}	[mm]	72	96	105	127,5	
LE-DA4	1	I I					
Splitting failure:	C _{cr,sp}	[mm]	100	150	200	215	
. •	1 ''	Reduced	embedment	1		1	
Effective anchorage depth:	h _{ef}	[mm]	-	40	50	65	
Splitting failure:	Scr.sp	[mm]		2 x	C _{CL.SD}		
LE-A4		•		= **	7-F		
Splitting failure:	C _{cr.sp}	[mm]	-	100	100	165	
LE-ZNA4		•					
Splitting failure:	Ccr sp	[mm]	-	80	100	130	
LE-DA4	5.,op						
Splitting failure:	Corep	[mm]	-	100	125	165	
1) The pull-out failure mode is not decisiv	/e	J			.20	.00	
,, p	-						
E-A4, LE-ZNA4, LE-DA4					-		
'erformances Characteristic resistance under te	ension lo	ad			Anne	ex C 1	

Table C2 – Displacement under	tensio	n load					
Size LE-ZNA4, LE-DA4		M8	M10	M12	M16		
Tension service load in concrete:	N	[kN]	4,1	4,1	5,8	7,2	
Diaplacement:	δ _{N0}	[mm]	1,4	1,4	1,4	1,4	
Displacement.	δ _{N∞}	[mm]	0,6				
Size LE-A4			M8	M10	M12	M16	
Tension service load in concrete:	N	[kN]	4,1	4,1	5,8	7,2	
Diaplacement:	δ _{N0}	[mm]	1,0	1,1	1,4	1,4	
	δ _{N∞}	[mm]	0,5				

LE-A4, LE-ZNA4, LE-DA4

Performances

Displacement under tension load

Size LE-ZNA4, LE-DA4			M8	M10	M12	M16
STEEL FAILURE WITHOUT LEVER	R ARM				I	I
Characteristic resistance	V _{Rk.s}	[kN]	12,4	19,7	26,6	49,6
Partial safety factor class:	γ _{M,s}	[-]		1,	31	
STEEL FAILURE WITH LEVER AR	M					
Characteristic bending moment	M _{Rk.s}	[Nm]	25,5	50,8	89,1	226,4
Partial safety factor:	γ _{M,s}	[-]		1,	31	
CONCRETE PRYOUT FAILURE						
		Standar	d embedment		1	
Pryout factor:	k ₈	[-]	1,0	2,0	2,0	2,0
		Reduced	d embedment		I	1
Pryout factor:	k ₈	[-]	1,0	1,0	1,0	2,0
Installation safety factor:	γ̂ins	[-]		1	,0	
CONCRETE EDGE FAILURE					I	
Effective length of anchor:	l _f	[mm]	40	40 / 60	50 / 70	65 / 85
Outside diameter of anchor:	d _{nom}	[mm]	8	10	12	16
Installation safety factor:	γ_{ins}	[-]		1	,0	
			MQ	M10	M12	M16
			INIO	WITO		WITO
Characteristic resistance		[kN]	12.9	20.3	25.0	18.6
Partial safety factor class:	V Rk.s	[_]	12,0	20,3	25,9	40,0
STEEL FAILURE WITH LEVER AR	γm,s M	11		· · · · · · · · · · · · · · · · · · ·	00	
Characteristic bending moment	Meka	[Nm]	26.2	52.3	91.7	233.1
Partial safety factor:	VM o	[-]	20,2	1	35	200,1
CONCRETE PRYOUT FAILURE	7101,3			•,		
		Standar	d embedment			
Pryout factor:	k ₈	[-]	1.0	2.0	2.0	2.0
5	1 0	Reduced	d embedment	_,.	_,.	_,.
Pryout factor:	k ₈	[-]	1,0	1,0	1,0	2,0
Installation safety factor:	γins	[-]		1	,0	·
CONCRETE EDGE FAILURE	•	•				
Effective length of anchor:	lf	[mm]	40	40 / 60	50 / 70	65 / 85
Outside diameter of anchor:	d _{nom}	[mm]	8	10	12	16
Installation safety factor:	γ _{ins}	[-]		1	,0	
	_					
able C4 – Displacement under	shear	load	Ì	i	Ì	
Size LE-ZNA4, LE-DA4		1	M8	M10	M12	M16
Tension service load in concrete:	V	[kN]	6,1	9,6	12,7	19,7
	1		10	2.1	2,2	2,2
	δ _{v0}	[mm]	1,0	,		
Displacement:	δ _{∨0} δ _{∨∞}	[mm]	2,9	3,1	3,2	3,2
Displacement: Size LE-A4	δ_{V0} $\delta_{V^{\infty}}$	[mm] [mm]	2,9 M8	3,1 M10	3,2 M12	3,2 M16
Displacement: Size LE-A4 Tension service load in concrete:	δ_{V0} $\delta_{V^{\infty}}$ V	[mm] [mm] [kN]	2,9 M8 6,6	3,1 M10 10,7	3,2 M12 12,3	3,2 M16 19,3
Displacement: Size LE-A4 Tension service load in concrete:	$\begin{array}{c c} & \delta_{V0} \\ \hline & \delta_{V^{\infty}} \end{array}$	[mm] [mm] [kN] [mm]	2,9 M8 6,6 1,2	3,1 M10 10,7 1,7	3,2 M12 12,3 2,0	3,2 M16 19,3 2,0

LE-A4, LE-ZNA4, LE-DA4

Performances

Characteristic resistance under shear load Displacement under shear load Annex C 3

2,9

2,9

 δ_{V^∞}

[mm]

1,8

2,6

Size LE-ZNA4, LE-DA4			M8	M10	M12	M16
TENSION LOAD STEEL FAIL	URE					
Characteristic resistance	N _{Rk,s,C1}	[kN]	16,2	27,7	38,6	71,9
Partial safety factor	γMs,s,C1	[-]	1,57			
TENSION LOAD PULLOUT F	AILURE					
Characteristic resistance	N _{Rk,p,C1}	[kN]	8,5	8,5	12,0	18,0
Installation safety factor	γinst	[-]	1,0	1,0	1,0	1,2
SHEAR LOAD STEEL FAILUI	RE WITHOUT		RARM			
Characteristic resistance	V _{Rk,s,C1}	[kN]	8,2	13,6	20,7	39,7
Partial safety factor	γMs,C1	[-]	1,31			
Size LE-A4			M8	M10	M12	M16
TENSION LOAD STEEL FAIL	URE					
Characteristic resistance	N _{Rk,s,C1}	[kN]	16,7	28,5	39,7	74,0
Partial safety factor	γMs,s,C1	[-]	1,62			
TENSION LOAD PULLOUT F	AILURE					
Characteristic resistance	N _{Rk,p,C1}	[kN]	8,5	8,5	12,0	18,0
Installation safety factor	γinst	[-]	1,0	1,0	1,0	1,2
SHEAR LOAD STEEL FAILUI	RE WITHOUT	LEVER	ARM			
Characteristic resistance	V _{Rk,s,C1}	[kN]	7,2	11,0	17,1	33,0
Partial safety factor	γMs,C1	[-]		1	35	

LE-A4, LE-ZNA4, LE-DA4

Performances

Characteristic resistances loads - seismic performance category C1

Size LE-ZNA4, LE-DA4			M8	M10	M12	M16	
Min. Effective anchorage depth:	h _{ef}	[mm]	40	40	50	65	
Characteristic fire resistance durati	on at 30 n	ninutes					
Steel failure	N _{Rk,s,fi(30)}	[kN]	0,4	0,9	1,7	3,1	
Pull-Out Failure	N _{Rk,p,fi(30)}	[kN]	2,2	2,2	3,1	4,5	
Concrete Cone Failure	N _{Rk,c,fi(30)}	[kN]	1,9	1,9	3,4	6,6	
Characteristic fire resistance duration	on at 60 n	ninutes	•	·	·		
Steel failure	N _{Rk,s,fi(60)}	[kN]	0,3	0,8	1,3	2,4	
Pull-Out Failure	N _{Rk,p,fi(60)}	[kN]	2,2	2,2	3,1	4,5	
Concrete Cone Failure	N _{Rk,c,fi(60)}	[kN]	1,9	1,9	3,4	6,6	
Characteristic fire resistance durat	on at 90 n	ninutes					
Steel failure	N _{Rk,s,fi(90)}	[kN]	0,3	0,6	1,1	2,0	
Pull-Out Failure	N _{Rk,p,fi(90)}	[kN]	2,2	2,2	3,1	4,5	
Concrete Cone Failure	N _{Rk,c,fi(90)}	[kN]	1,9	1,9	3,4	6,6	
Characteristic fire resistance durat	on at 120	minutes	6				
Steel failure	N _{Rk,s,fi(120)}	[kN]	0,2	0,5	0,8	1,6	
Pull-Out Failure	N _{Rk,p,fi(120)}	[kN]	1,7	1,7	2,4	3,6	
Concrete Cone Failure	N _{Rk,c,fi(120)}	[kN]	1,6	1,6	2,7	5,2	
		S	pacing				
Spacing	S _{cr,N}	[mm]	4 x h _{ef}				
Opacing	S _{min}	[mm]	54	54	68	88	
	C _{cr,N}	[mm]		2 x	h _{ef}		
Edge distance	C _{min}	[mm]	2 x h _{ef} , however if the fire attack is from more than one side, the ed distance of the anchor has to be ≥ 300 mm and $\ge 2 x h_{ef}$				

Table C7 – Characteristic values of resistance to shear load under fire exposure

Size LE-ZNA4, LE-DA4			M8	M10	M12	M16	
Characteristic fire resistance durat	ion at 30 n	ninutes			•		
Steel Failure without lever arm	V _{Rk,s,fi(30)}	[kN]	0,4	0,9	1,7	3,1	
Steel Failure with lever arm	M _{Rk,s,fi(30)}	[Nm]	0,4	1,1	2,6	6,7	
Characteristic fire resistance durat	ion at 60 n	ninutes			·		
Steel Failure without lever arm	V _{Rk,s,fi(60)}	[kN]	0,3	0,8	1,3	2,4	
Steel Failure with lever arm	M _{Rk,s,fi(60)}	[Nm]	0,3	1,0	2,0	5,0	
Characteristic fire resistance durat	ion at 90 n	ninutes			·		
Steel Failure without lever arm	V _{Rk,s,fi(90)}	[kN]	0,3	0,6	1,1	2,0	
Steel Failure with lever arm	M _{Rk,s,fi(90)}	[Nm]	0,3	0,7	1,7	4,3	
Characteristic fire resistance durat	ion at 120	minutes	;				
Steel Failure without lever arm	V _{Rk,s,fi(120)}	[kN]	0,2	0,5	0,8	1,6	
Steel Failure with lever arm	M _{Rk,s,fi(120)}	[Nm]	0,2	0,6	1,3	3,3	
Concrete pryout failure R30-R120					•		
Characteristic resistance	V _{Rk,cp,fi}	[kN]	Concrete pryout failure according to EN 1992-4				
Spacing	S _{min}	[mm]	54	54	68	88	
Edge distance	C _{min}	[mm]	54	54	68	88	

LE-A4, LE-ZNA4, LE-DA4

Performances

Characteristic values of resistance under fire exposure

Size LE-A4			M8	M10	M12	M16	
Min. Effective anchorage depth:	h _{ef}	[mm]	40	40	50	65	
Characteristic fire resistance durat	ion at 30 n	ninutes					
Steel failure	N _{Rk,s,fi(30)}	[kN]	0,7	1,5	2,5	4,7	
Pull-Out Failure	N _{Rk,p,fi(30)}	[kN]	2,2	2,2	3,1	4,5	
Concrete Cone Failure	N _{Rk,c,fi(30)}	[kN]	1,9	1,9	3,4	6,6	
Characteristic fire resistance durat	ion at 60 n	ninutes					
Steel failure	N _{Rk,s,fi(60)}	[kN]	0,6	1,2	2,1	3,9	
Pull-Out Failure	N _{Rk,p,fi(60)}	[kN]	2,2	2,2	3,1	4,5	
Concrete Cone Failure	N _{Rk,c,fi(60)}	[kN]	1,9	1,9	3,4	6,6	
Characteristic fire resistance durat	ion at 90 n	ninutes					
Steel failure	N _{Rk,s,fi(90)}	[kN]	0,4	0,9	1,7	3,1	
Pull-Out Failure	N _{Rk,p,fi(90)}	[kN]	2,2	2,2	3,1	4,5	
Concrete Cone Failure	N _{Rk,c,fi(90)}	[kN]	1,9	1,9	3,4	6,6	
Characteristic fire resistance durat	ion at 120	minutes	5		•		
Steel failure	N _{Rk,s,fi(120)}	[kN]	0,4	0,8	1,3	2,5	
Pull-Out Failure	N _{Rk,p,fi(120)}	[kN]	1,7	1,7	2,4	3,6	
Concrete Cone Failure	N _{Rk,c,fi(120)}	[kN]	1,6	1,6	2,7	5,2	
		S	pacing				
Specing	S _{cr,N}	[mm]	4 x h _{ef}				
орасну	S _{min}	[mm]	54	54	68	88	
	C _{cr,N}	[mm]		2 x	hef		
Edge distance	C _{min}	[mm]	2 x h _{ef} , however distance	r if the fire attack is of the anchor has t	from more than o to be ≥ 300 mm an	ne side, the e d ≥ 2 x h _{ef}	

Table C9 – Characteristic values of resistance to shear load under fire exposure

Size LE-A4			M8	M10	M12	M16	
Characteristic fire resistance durat	ion at 30 n	ninutes					
Steel Failure without lever arm	V _{Rk,s,fi(30)}	[kN]	0,7	1,5	2,5	4,7	
Steel Failure with lever arm	M _{Rk,s,fi(30)}	[Nm]	0,7	1,9	3,9	10,0	
Characteristic fire resistance durat	ion at 60 n	ninutes					
Steel Failure without lever arm	V _{Rk,s,fi(60)}	[kN]	0,6	1,2	2,1	3,9	
Steel Failure with lever arm	M _{Rk,s,fi(60)}	[Nm]	0,6	1,5	3,3	8,3	
Characteristic fire resistance durat	ion at 90 n	ninutes					
Steel Failure without lever arm	V _{Rk,s,fi(90)}	[kN]	0,4	0,9	1,7	3,1	
Steel Failure with lever arm	M _{Rk,s,fi(90)}	[Nm]	0,4	1,2	2,6	6,7	
Characteristic fire resistance durat	ion at 120	minutes	;				
Steel Failure without lever arm	V _{Rk,s,fi(120)}	[kN]	0,4	0,8	1,3	2,5	
Steel Failure with lever arm	M _{Rk,s,fi(120)}	[Nm]	0,4	1,0	2,1	5,3	
Concrete pryout failure R30-R120							
Characteristic resistance	V _{Rk,cp,fi}	[kN]	Concrete pryout failure according to EN 1992-4				
Spacing	S _{min}	[mm]	54	54	68	88	
Edge distance	C _{min}	[mm]	54	54	68	88	

LE-A4, LE-ZNA4, LE-DA4

Performances

Characteristic values of resistance under fire exposure