

PRODUCT DATA SHEET – LE-ZN

Section 1. PRODUCT DESCRIPTION

MECHANICAL ANCHOR – LE-ZN

Mechanical anchor LE-ZN consists of threaded rod bolt ended with expansion cone, expansion sleeve, hexagonal nut and washer. It is made of carbon steel. Corrosion protection is ensured by galvanized zinc coating. Fixing is executed by tightening the nut with adequate torque which causes sliding of expansion sleeve over the expansion cone and creates a permanent anchorage. The anchor is ideal for fixing in indoor: machines and equipment, montage of light and medium weight steel structures, handrails and storage racks.

Recommended for substrates:

• non-cracked, reinforced and non-reinforced concrete of C20/25 ÷ C50/60 strength class

Advantages:

- fast and simple installation by driving the anchor and tightening
- ready to carry full capacity immediately
- supplied assembled with the nut and washer
- fire resistance R30 R120

Mechanical anchor hold European Technical Assessment: ETA-20/0640

Section 2. METHOD OF INSTALLATION

- 1. Original mechanical anchors delivered by the manufacturer can be used only
- 2. Before installation check whether parameters of the substrate (where anchors are to be installed) conform to parameters of the substrate used in testing, based on which characteristic loading resistances of connections were determined (see table 1÷6)
- 3. Install anchors so that reinforcement of the substrate is not damaged
- 4. Before installation, indicate the drilling points where anchors are to be installed in accordance with installation guidelines
- 5. Then drill the holes in accordance with the parameters selected (diameter and depth of the hole), perpendicularly to the substrate (see table 1, 4)
- 6. Clean holes with SCF brush (min. 3x) and blow out clean with PCF pump (min. 3x)
- 7. Drive anchor into the hole by light hits of a hammer and then tighten the screw by applying an adequate torque (T_{inst}) using torque wrench (see table 1, 4)
- 8. Note that after the anchor is expanded, the washer under the nut should be pressed against the fixed member

Assembly diagram:

PRODUCT DATA SHEET – LE-ZN

Section 3. TECHNICAL DATA

TABLE 1. INSTALLATION PARAMETERS – STANDARD EMBEDMENT DEPTH										
Anchor diameter	d	[mm]	M8	M10	M12	M16				
Drill hole diameter	do	[mm]	8	10	12	16				
Effective embedment depth	h _{ef}	[mm]	40	60	70	85				
Depth of drill hole	h₀ ≥	[mm]	52	74	88	106				
Diameter of clearance hole in the fixture	d _f ≤	[mm]	10	12	14	18				
Torque moment	T _{inst}	[Nm]	20	30	50	100				
Width torque wrench	SW	[mm]	13	17	19	24				
Minimum thickness of concrete member	h _{min}	[mm]	100	120	160	170				
Addition of all a constraint		[mm]	35	40	50	65				
minimum allowable spacing-	for c ≥	[mm]	75	70	65	85				
Minimum allowable adre distance]	Cmin	[mm]	40	45	55	65				
Minimum allowable edge distance-/	for s ≥	[mm]	130	105	85	125				
Spacing for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing effects in case of concrete cone failure	S _{cr,N}	[mm]	120	180	210	255				
Edge distance for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing effects in case of concrete cone failure	Ccr,N	[mm]	60	90	105	127,5				
Spacing for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing effects in case of splitting failure	S _{cr,sp}	[mm]	200	300	400	425				
Edge distance for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing effects in case of splitting failure	C _{cr,sp}	[mm]	100	150	200	215				

¹)ETA-20/0640 provides flexible edge & spacing values for each anchor layout configuration depending on base material thickness. Minimum spacing and edge distance values on the table are recommendations for specific anchor layout with minimum base material dimensions. We kindly ask you to check your designs on KLIMAS DESIGN FIX SOFTWARE to verify the edge & spacing values. Example of the calculated minimum edge distance and spacing for the specific member thicknesses for standard embedment depth are also mentioned in TABLE 2.

TABLE 2. – EXAMPLE OF THE CALCULATED MINIMUM EDGE DISTANCE AND SPACING FOR THE SPECIFIC MEMBER THICKNESSES – STANDARD EMBEDMENT DEPTH

Installation parameters			M8			M10				M12		M16		
Splitting area	A _{sp,req} .	[mm ²]		24799		28712				378	44	54150		
Embedment depth	h _{ef}	[mm]		40		60			70		85			
Minimum thickness of concrete member	h _{min}	[mm]		100 120			160		160 170					
Actual concrete member thickness	h _{act.} 1	[mm]	1	00	115	12	0	150		160		170	190	
Minimum allowable spacing:	Smin	[mm]	3	5	35	4(C		40		50)	65	65
within anowable spacing.	for c ≥	[mm]	7	5	65	70	C	55			65	;	85	75
Minimum allowable edge	C _{min}	[mm]	40	50	50	45	50	45	50	55	55	65	65	75
distance:	for s ≥	[mm]	130	100	70	105	90	95	65	40	85	50	125	65

 1 For other base material thicknesses h \geq hact. , same edge distance and spacing values are allowed

PRODUCT DATA SHEET – LE-ZN

TABLE 3. TENSION LOAD – STANDARD EMBEDMENT DEPTH									
Anchor diameter	M8	M10	M12	M16					
Characteristic resistance of an anchor in case of steel failure	N _{Rk,s}	[kN]	16,2	27,7	38,6	71,9			
Design resistance of an anchor in case of steel failure (y=1,81)	N _{Rd,s}	[kN]	8,9	15,3	21,3	39,7			
Characteristic resistance in case of failure by pull-out	N _{Rk,p}	[kN]	*	*	*	*			
Design resistance in case of failure by pull-out	N _{Rd,p}	[kN]	*	*	*	*			
Characteristic resistance of an anchor in case of concrete cone failure	N _{Rk,c}	[kN]	12,4	22,9	28,8	38,6			
Design resistance of an anchor in case of concrete cone failure (γ =1,5)	N _{Rd,c}	[kN]	8,3	15,2	19,2	25,7			
Characteristic resistance of a single anchor in case of splitting failure	N _{Rk,sp}	[kN]	12,4	22,9	28,8	38,6			
Design resistance of a single anchor in case of splitting failure (γ =1,5)	N _{Rd,sp}	[kN]	8,3	15,2	19,2	25,7			
*pull-out failure is not authoritative									

TABLE 4. SHEAR LOAD – STANDARD EMBEDMENT DEPTH									
Characteristic resistance of an anchor in case of steel failure	V _{Rk,s}	[kN]	12,4	19,7	28,7	53,4			
Design resistance of an anchor in case of steel failure (y=1,51)	V _{Rd,s}	[kN]	8,2	13,1	19,0	35,4			
Characteristic bending resistance	M ⁰ _{Rk,s}	[Nm]	38,0	75,4	131,6	316,0			
Design bending resistance (y=1,51)	M ⁰ _{Rk,s}	[Nm]	25,2	49,9	87,2	209,2			
Characteristic resistance of an anchor in case of concrete pry-out failure	V _{Rk,cp}	[kN]	12,4	22,9	28,8	77,1			
Design resistance of an anchor in case of concrete pry-out failure (γ =1,5)	V _{Rd,cp}	[kN]	8,3	15,2	19,2	51,4			
TABLE 5. INSTALLATION PARAMETERS –	REDUCED	EMBEDME	NT DEPTH						
Anchor diameter	d	[mm]	M8	M10	M12	M16			
Drill hole diameter	do	[mm]	-	10	12	16			
Effective embedment depth	h _{ef}	[mm]	-	40	50	65			
Depth of drill hole	h₀ ≥	[mm]	-	54	68	86			
Diameter of clearance hole in the fixture	d _f ≤	[mm]	-	12	14	18			
Torque moment	T _{inst}	[Nm]	-	30	50	100			
Width torque wrench	SW	[mm]	-	17	19	24			
Minimum thickness of concrete member	h _{min}	[mm]	-	100	100	130			
Minimum allowable specing ¹)	Smin	[mm]	-	40	50	65			
Minimum allowable spacing-	for c ≥	[mm]	-	85	110	120			
Minimum allowable edge distance ¹⁾	Cmin	[mm]	-	45	55	65			
Minimum allowable edge distance-	for s ≥	[mm]	-	155	215	225			
Spacing for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing effects in case of concrete cone failure	S _{cr,N}	[mm]	-	120	150	195			
Edge distance for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing effects in case of concrete cone failure	C _{cr,N}	[mm]	-	60	75	97,5			
Spacing for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing effects in case of splitting failure	Scr,sp	[mm]	-	200	250	325			
Edge distance for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing effects in case of splitting failure	C _{cr,sp}	[mm]	-	100	125	165			

¹/ETA-20/0640 provides flexible edge & spacing values for each anchor layout configuration depending on base material thickness. Minimum spacing and edge distance values on the table are recommendations for specific anchor layout with minimum base material dimensions. We kindly ask you to check your designs on **KLIMAS DESIGN FIX SOFTWARE** to verify the edge & spacing values. **Example of the calculated minimum edge distance and spacing for the specific member thicknesses for reduced embedment depth are also mentioned in TABLE 6.**

PRODUCT DATA SHEET – LE-ZN

TABLE 6. – EXAMPLE OF THE CALCULATED MINIMUM EDGE DISTANCE AND SPACING FOR THE SPECIFIC MEMBER THICKNESSES – REDUCED EMBEDMENT																	
DEPTH																	
Installation parameters			M8			M10			M12				M16				
Splitting area	A _{sp,req} .	[mm ²]	-		2	8712				3784	44		54150				
Embedment depth	h _{ef}	[mm]	-			40				50)		6	5			
Minimum thickness of	hmin	h _{min} [mm]		h _{min} [mm]	min [mm]	-	100					100				130	
concrete member		[]				100											
Actual concrete member	h1	n .1 [mm]	_	100		13	20		100		150		130	160			
thickness	Hact.	[]		100		130				150			150	100			
Minimum allowable spacing:	Smin	[mm]	-	40		4	0		50	50 50			65	65			
Winning and wable spacing.	for $c \ge$	[mm]	-	85	85 65 1				110		70		120	95			
Minimum allowable edge	C _{min}	[mm]	-	45	45 45 50 55 60 95 55 60					60	70	100	80				
distance:	for $s \ge$	[mm]	-	155	135	100	70	45	95	125	95	50	120	100			

 1 For other base material thicknesses $h \ge h_{act.}$, same edge distance and spacing values are allowed

TABLE 7. TENSION LOAD - REDUCED EMBEDMENT DEPTH								
Anchor diameter	M8	M10	M12	M16				
Characteristic resistance of an anchor in case of steel failure	N _{Rk,s}	[kN]	-	27,7	38,6	71,9		
Design resistance of an anchor in case of steel failure (γ=1,81)	N _{Rd,s}	[kN]	-	15,3	21,3	39,7		
Characteristic resistance in case of failure by pull-out	N _{Rk,p}	[kN]	-	*	*	*		
Design resistance in case of failure by pull-out (γ=1,5)	N _{Rd,p}	[kN]	-	*	*	*		
Characteristic resistance of an anchor in case of concrete cone failure	N _{Rk,c}	[kN]	-	12,4	17,4	25,8		
Design resistance of an anchor in case of concrete cone failure (γ =1,5)	$N_{\text{Rd,c}}$	[kN]	-	8,3	11,6	17,2		
Characteristic resistance of a single anchor in case of splitting failure	N _{Rk,sp}	[kN]	-	12,4	17,4	25,8		
Design resistance of a single anchor in case of splitting failure	$N_{Rd,sp}$	[kN]	-	8,3	11,6	17,2		
*pull-out failure is not authoritative								

TABLE 8. SHEAR LOAD - REDUCED EMBEDMENT DEPTH Characteristic resistance of an anchor in case of steel failure V_{Rk,s} [kN] -19,7 28,7 53,4 35,4 _ Design resistance of an anchor in case of steel failure (γ =1,51) V_{Rd,s} [kN] 13,1 19,0 Characteristic bending resistance 316,0 $M^{0}_{Rk,s}$ [Nm] -75,4 131,6 Design bending resistance (γ=1,51) M⁰_{Rk,s} [Nm] 49,9 87,2 209,2 Characteristic resistance of an anchor in case of concrete pry-out failure V_{Rk,cp} [kN] -12,4 17,4 51,6 Design resistance of an anchor in case of concrete pry-out failure (γ =1,5) V_{Rd,cp} [kN] 8,3 11,6 34,4 TABLE 9. CHARACTERISTIC VALUES OF RESISTANCE TO TENSION LOAD UNDER FIRE EXPOSURE Anchor diameter d [mm] M8 M10 M12 M16 40 50 65 Min. effective anchorage depth [mm] 40 hef Characteristic fire resistance duration at 30 minutes Steel failure 0.4 0.9 1.7 3.1 NRKsfi [kN] Pull-Out Failure N_{Rk}, p, fi 3.0 [kN] 3.3 4.5 7.0 N_{Rk,c,fi} 2,6 **Concrete Cone Failure** 2,6 4,5 8,6 [kN] Characteristic fire resistance duration at 60 minutes Steel failure N_{Rk,s,fi} [kN] 0.3 0,8 1.3 2.4 **Pull-Out Failure** N_{Rk,p,fi} [kN] 3,0 3,3 4,5 7,0 Concrete Cone Failure N_{Rk,c,fi} [kN] 2,6 2,6 4,5 8,6 Characteristic fire resistance duration at 90 minutes Steel failure [kN] 0,3 0,6 1,1 2,0 N_{Rk.s.fi} 7,0 Pull-Out Failure [kN] 3,0 3,3 4,5 N_{Rk,p,fi} **Concrete Cone Failure** 2,6 2,6 8,6 N_{Rk,c,fi} [kN] 4,5 Characteristic fire resistance duration at 120 minutes Steel failure [kN] 0,2 0,5 0,8 1,6 N_{Rk.s.fi} **Pull-Out Failure** [kN] 2.4 2,6 3,6 5,6 N_{Rk,p,fi}

All rights reserved The sheet may be disclosed only in the form as delivered. No part (contents such as text, graphics, logos, figures, pictures, and any other data) given in this document may be modified or published whatsoever in part, without prior authorisation. Any trademarks, graphic symbols, trade names, logos and other data are protected by copyright and are property of their owner. Created: 2021-01-25 Updated: 2023-10-09

PRODUCT DATA SHEET – LE-ZN

Concrete Cone Failure	N _{Rk,c,fi}	[kN]	2,0	2,0	3,6	6,9	
Spacing							
Spacing	Scr,N	[mm]	4 x h _{ef}				
Spacing	Smin	[mm]	54	54	68	88	
	C _{cr,N}	[mm]	2 x h _{ef}				
Edge distance	Cmin	[mm]	$2 ext{ x h}_{ef}$, however if the fire attack is from more than one side, the edge distance of the anchor has to be $\geq 300 ext{ mm and } \geq 2 ext{ x h}_{ef}$				

 $\gamma_{\text{M,fi}}$ - partial safety factor for resistance under fire exposure (usually $\gamma_{\text{M,fi}}$ =1,0)

TABLE 10. CHARACTERISTIC VALUES OF RESISTANCE TO SHEAR LOAD UNDER FIRE EXPOSURE									
Anchor diameter	d	[mm]	M8	M10	M12	M16			
Characteristic fire resistance d	uration at 3	30 minutes							
Steel failure without lever arm	V _{Rk,s,fi}	[kN]	0,4	0,9	1,7	3,1			
Steel failure with lever arm	M _{Rk,s,fi}	[Nm]	0,4	1,7	3,9	9,3			
Characteristic fire resistance duration at 60 minutes									
Steel failure without lever arm	V _{Rk,s,fi}	[kN]	0,3	0,8	1,3	2,4			
Steel failure with lever arm	M _{Rk,s,fi}	[Nm]	0,3	1,4	2,9	7,0			
Characteristic fire resistance d	uration at 9	90 minutes							
Steel failure without lever arm	V _{Rk,s,fi}	[kN]	0,3	0,6	1,1	2,0			
Steel failure with lever arm	M _{Rk,s,fi}	[Nm]	0,3	1,1	2,5	6,0			
Characteristic fire resistance du	uration at 1	20 minutes	;						
Steel failure without lever arm	V _{Rk,s,fi}	[kN]	0,2	0,5	0,8	1,6			
Steel failure with lever arm	M _{Rk,s,fi}	[Nm]	0,2	0,9	1,9	4,6			

TABLE 11. SELECTION TABLE										
Product code	Anchor diameter and length	Max. thickness of fixed member	Thread	Nut head type	Pieces per pack					
	d _w x L _w [mm]	t _{fix1} / t _{fix2} [mm]	[-]	[-]	[pcs.]					
LE-ZN M8										
LE-ZN-08060	8x60	5 / -	M8	SW-13	100					
LE-ZN-08075	8x75	20 / -	M8	SW-13	100					
LE-ZN-08095	8x95	40 / -	M8	SW-13	50					
LE-ZN-08115	8x115	60 / -	M8	SW-13	50					
LE-ZN-08135	8x135	80 / -	M8	SW-13	50					
LE-ZN-08155	8x155	100 / -	M8	SW-13	50					
		LE-ZN	N M10							
LE-ZN-10085	10x85	5 / 25	M10	SW-17	50					
LE-ZN-10095	10x95	15 / 35	M10	SW-17	50					
LE-ZN-10105	10x105	25 / 45	M10	SW-17	25					
LE-ZN-10115	10x115	35 / 55	M10	SW-17	25					
LE-ZN-10135	10x135	55 / 75	M10	SW-17	25					
LE-ZN-10155	10x155	75 / 95	M10	SW-17	25					
		LE-ZN	N M12							
LE-ZN-12085	12x85	-/ 5	M12	SW-19	40					
LE-ZN-12095	12x95	- / 15	M12	SW-19	50					
LE-ZN-12105	12x105	5 / 25	M12	SW-19	50					
LE-ZN-12115	12x115	15 / 35	M12	SW-19	40					
LE-ZN-12125	12x125	25 / 45	M12	SW-19	25					
LE-ZN-12145	12x145	45 / 65	M12	SW-19	25					
LE-ZN-12165	12x165	65 / 85	M12	SW-19	25					
		LE-ZN	N M16							
LE-ZN-16105	16x105	- / 5	M16	SW-24	25					
LE-ZN-16115	16x115	- / 15	M16	SW-24	25					
LE-ZN-16125	16x125	5 / 25	M16	SW-24	25					
LE-ZN-16145	16x145	25 / 45	M16	SW-24	20					
LE-ZN-16165	16x165	45 / 65	M16	SW-24	15					

All rights reserved The sheet may be disclosed only in the form as delivered. No part (contents such as text, graphics, logos, figures, pictures, and any other data) given in this document may be modified or published whatsoever in part, without prior authorisation. Any trademarks, graphic symbols, trade names, logos and other data are protected by copyright and are property of their owner. Created: 2021-01-25 Updated: 2023-10-09

PRODUCT DATA SHEET – LE-ZN

Section 4. REMARKS

- 1. All previous versions of this Product Data Sheet shall cease to be valid
- 2. Data given in this Product Data Sheet is in accordance with current knowledge and published in good faith. KLIMAS Sp. z o.o. is not responsible for correctness and quality of the fixing if recommendations regarding method of use and installation are not followed.