KLIMAS Sp. z o.o. ul. W. Witosa 135/137 Kuźnica Kiedrzyńska 42-233 Mykanów

tel. +48 34 377 71 00, fax. +48 34 328 01 73 Hotline: 801 477 477, www.wkret-met.com

PRODUCT DATA SHEET - LE-ZNA4

Section 1. PRODUCT DESCRIPTION

MECHANICAL ANCHOR - LE-ZNA4

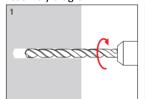
Mechanical anchor LE-ZNA4 consists of threaded rod bolt ended with expansion cone, expansion sleeve, hexagonal nut and washer. Threaded rod bolt, nut and washer are made of carbon steel and covered with a layer of zinc, while the expansion sleeve is made of A4 stainless steel. Fixing is executed by tightening the nut with adequate torque which causes sliding of expansion sleeve over the expansion cone and creates a permanent anchorage. The anchor is ideal for fixing in nonaggressive environments and both indoor: metal substructure of the facade, machines and equipment, montage of light and medium weight steel structures, handrails and storage racks.

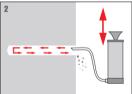
Recommended for substrates:

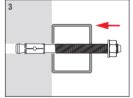
cracked and non-cracked, reinforced and non-reinforced concrete of C20/25 ÷ C50/60 strength class

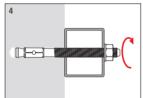
Advantages:

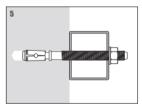
- fast and simple installation by driving the anchor and tightening
- ready to carry full capacity immediately
- supplied assembled with the nut and washer
- seismic survevs
- fire resistance R30 R120

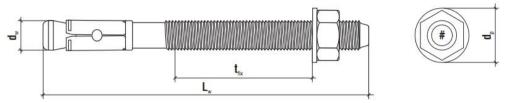



Mechanical anchor hold European Technical Assessment: ETA-20/0641


Section 2. METHOD OF INSTALLATION


- 1. Original mechanical anchors delivered by the manufacturer can be used only
- Before installation check whether parameters of the substrate (where anchors are to be installed) conform to parameters of the substrate 2. used in testing, based on which characteristic loading resistances of connections were determined (see table 1÷6)
- 3. Install anchors so that reinforcement of the substrate is not damaged
- Before installation, indicate the drilling points where anchors are to be installed in accordance with installation guidelines 4.
- Then drill the holes in accordance with the parameters selected (diameter and depth of the hole), perpendicularly to the substrate (see table 1, 4)
- 6. Clean holes with SCF brush (min. 3x) and blow out clean with PCF pump (min. 3x)
- 7. Drive anchor into the hole by light hits of a hammer and then tighten the screw by applying an adequate torque (Tinst) using torque wrench (see table 1, 4)
- 8. Note that after the anchor is expanded, the washer under the nut should be pressed against the fixed member


Assembly diagram:


KLIMAS Sp. z o.o. ul. W. Witosa 135/137 Kuźnica Kiedrzyńska 42-233 Mykanów

tel. +48 34 377 71 00, fax. +48 34 328 01 73 Hotline: 801 477 477, www.wkret-met.com

PRODUCT DATA SHEET - LE-ZNA4

Section 3. TECHNICAL DATA

TABLE 1. INSTALLATION PARAMETERS – STANDARD EMBEDMENT DEPTH									
Anchor diameter	d	[mm]	Ø8	Ø10	Ø12	Ø16			
Drill hole diameter	d ₀	[mm]	8	10	12	16			
Effective embedment depth	h _{ef}	[mm]	40	60	70	85			
Depth of drill hole	h₀ ≥	[mm]	52	74	88	106			
Diameter of clearance hole in the fixture	d _f ≤	[mm]	10	12	14	18			
Torque moment	T _{inst}	[Nm]	20	30	50	100			
Width torque wrench	SW	[mm]	13	17	19	24			
Minimum thickness of concrete member	h _{min}	[mm]	100	120	160	170			
Minimum allowable spacing ¹⁾	S _{min}	[mm]	35	40	50	65			
	for c ≥	[mm]	50	45	55	65			
	C _{min}	[mm]	40	45	55	65			
Minimum allowable edge distance ¹⁾	for s ≥	[mm]	55	40	50	65			
Spacing for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing effects in case of concrete cone failure	S _{cr,N}	[mm]	120	180	210	255			
Edge distance for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing effects in case of concrete cone failure	C _{cr} ,N	[mm]	60	90	105	127,5			
Spacing for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing effects in case of splitting failure	S _{cr,sp}	[mm]	144	192	210	255			
Edge distance for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing effects in case of splitting failure	C _{cr} ,sp	[mm]	72	96	105	127,5			

¹⁾ETA-20/0641 provides flexible edge & spacing values for each anchor layout configuration depending on base material thickness. Minimum spacing and edge distance values on the table are recommendations for specific anchor layout with minimum base material dimensions calculated for cracked concrete condition. We kindly ask you to check your designs on $\mbox{\bf KLIMAS}$ $\mbox{\bf DESIGN}$ FIX $\mbox{\bf SOFTWARE}$ to verify the edge & spacing values.

TABLE 2. TENSION LOAD – STANDARD EMBEDMENT DEPTH								
Characteristic resistance of an anchor in case of steel failure		N _{Rk,s}	[kN]	16,2	27,7	38,6	71,9	
Design resistance of an anchor in case of steel failure (γ=1,	57)	N _{Rd,s}	[kN]	10,3	17,6	24,6	45,8	
Characteristic resistance in case of failure by pull-out		$N_{Rk,p}$	[kN]	*	*	*	*	
Design resistance in case of failure by pull-out		$N_{Rd,p}$	[kN]	*	*	*	*	
Characteristic resistance of an anchor in case of concrete cone failure	uncracked concrete	N _{Rk,c}	[kN]	12,4	22,9	28,8	38,6	
	cracked concrete	N _{Rk,c}	[kN]	8,7	16,0	20,2	27,0	
Design resistance of an anchor in case of concrete cone	uncracked concrete	N _{Rd,c}	[kN]	8,3	15,2	19,2	21,4	
failure	cracked concrete	$N_{\text{Rd,c}}$	[kN]	5,8	10,7	13,4	15,0	
Characteristic resistance of a single anchor in case of	uncracked concrete	N _{Rk,sp}	[kN]	12,4	22,9	28,8	38,6	
splitting failure	cracked concrete	N _{Rk,sp}	[kN]	8,7	16,0	20,2	27,0	
Design resistance of a single anchor in case of splitting	uncracked concrete	N _{Rd,sp}	[kN]	8,3	15,2	19,2	21,4	
failure	cracked concrete	$N_{Rd,sp}$	[kN]	5,8	10,7	13,4	15,0	

^{*}pull-out failure is not decisive

PRODUCT DATA SHEET - LE-ZNA4

TABLE 3. SHEAR LOAD – STANDARD EMBEDMENT DEPTH								
Characteristic resistance of an anchor in case of steel failure	$V_{Rk,s}$	[kN]	12,4	19,7	26,6	49,6		
Design resistance of an anchor in case of steel failure (γ=1,31)	$V_{Rd,s}$	[kN]	9,5	15,1	20,3	37,9		
Characteristic bending resistance	M ⁰ _{Rk,s}	[Nm]	25,5	50,8	89,1	226,4		
Design bending resistance (γ=1,31)	M ⁰ _{Rk,s}	[Nm]	19,5	38,8	68,0	172,8		
Characteristic resistance of an anchor in case of concrete pry-out failure	$V_{Rk,cp}$	[kN]	12,4	45,7	57,6	77,1		
Design resistance of an anchor in case of concrete pry-out failure (γ=1,5)	$V_{Rd,cp}$	[kN]	8,3	30,5	38,4	51,4		
TABLE 4. INSTALLATION PARAMETERS –	REDUCED	EMBEDME	NT DEPTH	I .	<u>I</u>			
Anchor diameter	d	[mm]	Ø8	Ø10	Ø12	Ø16		
Drill hole diameter	d ₀	[mm]	-	10	12	16		
Effective embedment depth	h _{ef}	[mm]	-	40	50	65		
Depth of drill hole	h ₀ ≥	[mm]	-	54	68	86		
Diameter of clearance hole in the fixture	d _f ≤	[mm]	-	12	14	18		
Torque moment	T _{inst}	[Nm]	-	30	50	100		
Width torque wrench	SW	[mm]	-	17	19	24		
Minimum thickness of concrete member	h _{min}	[mm]	-	100	100	130		
	Smin	[mm]	-	40	50	65		
Minimum allowable spacing ¹⁾	for c ≥	[mm]	-	60	80	65		
	C _{min}	[mm]	-	45	55	65		
Minimum allowable edge distance ¹⁾	for s ≥	[mm]	-	75	120	65		
Spacing for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing effects in case of concrete cone failure	S _{cr} ,N	[mm]	-	120	150	195		
Edge distance for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing effects in case of concrete cone failure	C _{cr} ,N	[mm]	-	60	75	97,5		
Spacing for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing effects in case of splitting failure	S _{cr,sp}	[mm]	-	160	200	260		
Edge distance for ensuring the transmission of the characteristic resistance in tension of a single fastener without edge and spacing effects in case of splitting failure	C _{cr,sp}	[mm]	-	80	100	130		

¹ETA-20/0641 provides flexible edge & spacing values for each anchor layout configuration depending on base material thickness. Minimum spacing and edge distance values on the table are recommendations for specific anchor layout with minimum base material dimensions calculated for cracked concrete condition. We kindly ask you to check your designs on **KLIMAS DESIGN FIX SOFTWARE** to verify the edge & spacing values.

TABLE 5. TENSION LOAD - REDUCED EMBEDMENT DEPTH									
Characteristic resistance of an anchor in case of steel failure			[kN]	-	27,7	38,6	71,9		
Design resistance of an anchor in case of steel failure (y=1,	57)	N _{Rd,s}	[kN]	-	17,6	24,6	45,8		
Characteristic resistance in case of failure by pull-out		$N_{Rk,p}$	[kN]	-	*	*	*		
Design resistance in case of failure by pull-out		$N_{Rd,p}$	[kN]	-	*	*	*		
Characteristic resistance of an anchor in case of concrete cone failure	uncracked concrete	N _{Rk,c}	[kN]	-	12,4	17,4	25,8		
	cracked concrete	N _{Rk,c}	[kN]	-	8,7	12,2	18,0		
Design resistance of an anchor in case of concrete cone	uncracked concrete	N _{Rd,c}	[kN]	-	8,3	11,6	14,3		
failure	cracked concrete	N _{Rd,c}	[kN]	-	5,8	8,1	10,0		
Characteristic resistance of a single anchor in case of	uncracked concrete	N _{Rk,sp}	[kN]	-	12,4	17,4	25,8		
splitting failure	cracked concrete	$N_{Rk,sp}$	[kN]	-	8,7	12,2	18,0		
Design resistance of a single anchor in case of splitting	uncracked concrete	N _{Rd,sp}	[kN]	-	8,3	11,6	14,3		
failure	cracked concrete	N _{Rd,sp}	[kN]	-	5,8	8,1	10,0		

^{*}pull-out failure is not decisive

PRODUCT DATA SHEET - LE-ZNA4

TABLE 6. SHEAR LOAD – REDUCED EMBEDMENT DEPTH									
Characteristic resistance of an anchor in case of steel failure $V_{Rk,s}$ [kN] - 19,7 26,6									
Design resistance of an anchor in case of steel failure (y=1,31)	$V_{Rd,s}$	[kN]	-	15,1	20,3	37,9			
Characteristic bending resistance	M ⁰ _{Rk,s}	[Nm]	-	50,8	89,1	226,4			
Design bending resistance (y=1,31)	M ⁰ _{Rd,s}	[Nm]	-	38,8	68,0	172,8			
Characteristic resistance of an anchor in case of concrete pry-out failure		[kN]	-	12,4	17,4	51,6			
Design resistance of an anchor in case of concrete pry-out failure (γ=1,5)	$V_{Rd,cp}$	[kN]	-	8,3	11,6	34,4			

TABLE 7. CHARACTERISTIC RESISTANCES LOADS – SEISMIC PERFORMANCE CATEGORY C1								
Anchor diameter	d	[mm]	Ø8	Ø10	Ø12	Ø16		
Tensile – steel failure								
Characteristic resistance	N _{Rk,s,C1}	[kN]	16,2 27,7 38,6 71,9					
Partial safety factor	γms,C1	[-]	1,57					
Tension load pullout failure								
Characteristic resistance	N _{Rk,p,C1}	[kN]	8,5	8,5	12,0	18,0		
installation safety factor	γinst	[-]	1,0	1,0	1,0	1,2		
Shear load steel failure without lever arm								
Characteristic resistance	V _{Rk,s,C1}	[kN]	8,2	13,6	20,7	39,7		
Partial safety factor	γMs,C1	[-]	1,31					

TABLE 8. CHARACTERISTIC VALUES OF RESISTANCE	TO TENSIO	N LOAD U	NDER FIRE EX	POSURE			
Anchor diameter	d	[mm]	Ø8	Ø10	Ø12	Ø16	
Min. effective anchorage depth	h _{ef}	[mm]	40	40	50	65	
Characteristic fire resistance d	uration at 3	30 minutes					
Steel failure	$N_{Rk,s,fi}$	[kN]	0,4	0,9	1,7	3,1	
Pull-Out Failure	$N_{Rk,p,fi}$	[kN]	2,2	2,2	3,1	4,5	
Concrete Cone Failure	$N_{Rk,c,fi}$	[kN]	1,9	1,9	3,4	6,6	
Characteristic fire resistance d	uration at (60 minutes					
Steel failure	$N_{Rk,s,fi}$	[kN]	0,3	0,8	1,3	2,4	
Pull-Out Failure	$N_{Rk,p,fi}$	[kN]	2,2	2,2	3,1	4,5	
Concrete Cone Failure	$N_{Rk,c,fi}$	[kN]	1,9	1,9	3,4	6,6	
Characteristic fire resistance d	uration at 9	90 minutes	i				
Steel failure	$N_{Rk,s,fi}$	[kN]	0,3	0,6	1,1	2,0	
Pull-Out Failure	$N_{Rk,p,fi}$	[kN]	2,2	2,2	3,1	4,5	
Concrete Cone Failure	N _{Rk,c,fi}	[kN]	1,9	1,9	3,4	6,6	
Characteristic fire resistance du	uration at 1	20 minute	S				
Steel failure	$N_{Rk,s,fi}$	[kN]	0,2	0,5	0,8	1,6	
Pull-Out Failure	$N_{Rk,p,fi}$	[kN]	1,7	1,7	2,4	3,6	
Concrete Cone Failure	N _{Rk,c,fi}	[kN]	1,6	1,6	2,7	5,2	
Spacing							
	S _{cr} ,N	[mm]	4 x h _{ef}				
Spacing	Smin	[mm]	54	54	68	88	
	C _{cr,N}	[mm]	2 x h _{ef}				
Edge distance	C _{min}	[mm]	2 x h_{ef} , however if the fire attack is from mothan one side, the edge distance of the anchoto be ≥ 300 mm and ≥ 2 x h_{ef}				

 $\gamma_{\text{M,fi}}$ - partial safety factor for resistance under fire exposure (usually $\gamma_{\text{M,fi}}$ =1,0)

PRODUCT DATA SHEET - LE-ZNA4

TABLE 9. CHARACTERISTIC VALUES OF RESISTANCE TO SHEAR LOAD UNDER FIRE EXPOSURE										
Anchor diameter	d	[mm]	Ø8	Ø10	Ø12	Ø16				
Characteristic fire resistance duration at 30 minutes										
Steel failure without lever arm	$V_{Rk,s,fi}$	[kN]	0,4	0,9	1,7	3,1				
Steel failure with lever arm	M _{Rk,s,fi}	[Nm]	0,4	1,1	2,6	6,7				
Characteristic fire resistance duration at 60 minutes										
Steel failure without lever arm	$V_{Rk,s,fi}$	[kN]	0,3	0,8	1,3	2,4				
Steel failure with lever arm	$M_{Rk,s,fi}$	[Nm]	0,3	1,0	2,0	5,0				
Characteristic fire resistance d	uration at 9	90 minutes								
Steel failure without lever arm	$V_{Rk,s,fi}$	[kN]	0,3	0,6	1,1	2,0				
Steel failure with lever arm	M _{Rk,s,fi}	[Nm]	0,3	0,7	1,7	4,3				
Characteristic fire resistance du	uration at 1	20 minutes	;							
Steel failure without lever arm	V _{Rk,s,fi}	[kN]	0,2	0,5	0,8	1,6				
Steel failure with lever arm	M _{Rk,s,fi}	[Nm]	0,2	0,6	1,3	3,3				
Concrete pryout failu	re R30-R12	.0		•						
Characteristic resistance	V _{Rk,cp,fi}	[kN]	Concrete pryout failure according to EN 1992-4							
Spacing	Smin	[mm]	54	54	68	88				
Edge distance	C _{min}	[mm]	54	54	68	88				

		TABLE 10. SEL	ECTION TABLE								
Product code	Anchor diameter and length	Max. thickness of fixed member	Thread	Nut head type	Pieces per pack						
	d _w x L _w [mm]	t _{fix1} / t _{fix2} [mm]	[-]	[-]	[pcs.]						
	LE-ZNA4 M8										
LE-ZNA4-08060	8x60	5/-	M8	SW-13	100						
LE-ZNA4-08075	8x75	20 / -	M8	SW-13	100						
LE-ZNA4-08095	8x95	40 / -	M8	SW-13	50						
LE-ZNA4-08115	8x115	60 / -	M8	SW-13	50						
LE-ZNA4-08135	8x135	80 / -	M8	SW-13	50						
LE-ZNA4-08155	8x155	100 / -	M8	SW-13	50						
	LE-ZNA4 M10										
LE-ZNA4-10085	10x85	5 / 25	M10	SW-17	50						
LE-ZNA4-10095	10x95	15 / 35	M10	SW-17	50						
LE-ZNA4-10105	10x105	25 / 45	M10	SW-17	25						
LE-ZNA4-10115	10x115	35 / 55	M10	SW-17	25						
LE-ZNA4-10135	10x135	55 / 75	M10	SW-17	25						
LE-ZNA4-10155	10x155	75 / 95	M10	SW-17	25						
		LE-ZNA	44 M12								
LE-ZNA4-12085	12x85	-/5	M12	SW-19	40						
LE-ZNA4-12095	12x95	- / 15	M12	SW-19	50						
LE-ZNA4-12105	12x105	5 / 25	M12	SW-19	50						
LE-ZNA4-12115	12x115	15 / 35	M12	SW-19	40						
LE-ZNA4-12125	12x125	25 / 45	M12	SW-19	25						
LE-ZNA4-12145	12x145	45 / 65	M12	SW-19	25						
LE-ZNA4-12165	12x165	65 / 85	M12	SW-19	25						
	LE-ZNA4 M16										
LE-ZNA4-16105	16x105	-/5	M16	SW-24	25						
LE-ZNA4-16115	16x115	- / 15	M16	SW-24	25						
LE-ZNA4-16125	16x125	5 / 25	M16	SW-24	25						
LE-ZNA4-16145	16x145	25 / 45	M16	SW-24	20						
LE-ZNA4-16165	16x165	45 / 65	M16	SW-24	15						

PRODUCT DATA SHEET - LE-ZNA4

Section 4. REMARKS

- 1. All previous versions of this Product Data Sheet shall cease to be valid
- Data given in this Product Data Sheet is in accordance with current knowledge and published in good faith. KLIMAS Sp. z o.o. is not responsible for correctness and quality of the fixing if recommendations regarding method of use and installation are not followed.