

#### KLIMAS Sp. z o.o. ul. Wincentego Witosa 135/137 Kuźnica Kiedrzyńska 42-233 Mykanów tel. +48 34 3777 100, fax +48 34 328 01 73



#### **DECLARACTION OF PERFORMANCE No 48/SZ/17**

Unique identification code of the product-type: WCF-E3 1.

Intended use/es: 2.

Product Intended use Post-installed fastening in cracked or uncracked concrete, see Bonded anchor for use in concrete appendix, especially Annexes B1 to B5

Manufacturer: KLIMAS Sp. z o.o. 3.

ul. Wincentego Witosa 135/137

Kuźnica Kiedrzyńska 42-233 Mykanów

Authorised representative: not applicable 4.

System/s of AVCP: System 1 5.

**European Assessment Document:** EAD 330499-01-0601

European Technical Assessments - ETA-17/0234 of 26/06/2019 b)

TECHNICKY A ZKUSEBNI USTAV STAVEBNI PRAHA s.p. c)

d) Identification number of notified body- 1020

#### Declared performance/s: 7.

Mechanical resistance and stability (BWR 1)

| Essential characteristic                             | Performance                                    |
|------------------------------------------------------|------------------------------------------------|
| Static and quasi-static loading                      |                                                |
| Resistance to steel failure (tension)                | See appendix, especially Annexes C 1, C 2      |
| Resistance to combined pull-out and concrete failure | See appendix, especially Annexes C 1, C 2      |
| Resistance to concrete cone failure                  | See appendix, especially Annexes C 1, C 2      |
| Edge distance to prevent splitting under load        | See appendix, especially Annexes C 1, C 2      |
| Robustness                                           | See appendix, especially Annexes C 1, C 2      |
| Maximum setting torque moment                        | See appendix, especially Annex B 5             |
| Minimum edge distance and spacing                    | See appendix, especially Annex B 5             |
| Resistance to steel failure (shear)                  | See appendix, especially Annexes C 3, C 4      |
| Resistance to pry-out failure                        | See appendix, especially Annexes C 3, C 4      |
| Resistance to concrete edge failure                  | See appendix, especially Annexes C 3, C 4      |
| Displacements under short term and long term loading | See appendix, especially Annex C 5             |
| Durability of metal parts                            | See appendix, especially AnnexA 3              |
| Seismic performance C1 and C2                        |                                                |
| Resistance to steel failure                          | See appendix, especially Annexes C 6, C 7, C 8 |
| Resistance to pull-out                               | See appendix, especially Annexes C 6, C 7, C 8 |
| Factor for annular gap                               | See appendix, especially Annexes C 6, C 7, C 8 |
| Displacement                                         | See appendix, especially Annex C 8             |

Appropriate Technical Documentation and/or Specific Technical Documentation:

not applicable

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

Kuźnica Kiedrzyńska 26.06.2019r.

(place and date of issue)

Kierownik działu technicznego

Adam Szczepanowski

(signature)

Adam Szczepanowski

This declaration replaces the declaration from 12.05.2017.

This DoP has been prepared in different languages. In case there is a dispute on the interpretation the english version shall always prevail. The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

## Appendix 1/19

#### 1. Technical description of the product

The WCF-E3 with steel elements is bonded anchor (injection type).

Steel elements can be galvanized or stainless steel threaded rods or rebars.

Steel element is placed into a drilled hole filled with injection mortar. The steel element is anchored via the bond between metal part, injection mortar and concrete. The anchor is intended to be used with various embedment depth up to 20 diameters.

The illustration and the description of the product are given in Annex A.

#### 2. Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the products in relation to the expected economically reasonable working life of the works.

# 3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

| Essential characteristic                             | Performance             |
|------------------------------------------------------|-------------------------|
| Static and quasi-static loading                      |                         |
| Resistance to steel failure (tension)                | See Annex C 1, C 2      |
| Resistance to combined pull-out and concrete failure | See Annex C 1, C 2      |
| Resistance to concrete cone failure                  | See Annex C 1, C 2      |
| Edge distance to prevent splitting under load        | See Annex C 1, C 2      |
| Robustness                                           | See Annex C 1, C 2      |
| Maximum setting torque moment                        | See Annex B 5           |
| Minimum edge distance and spacing                    | See Annex B 5           |
| Resistance to steel failure (shear)                  | See Annex C 3, C 4      |
| Resistance to pry-out failure                        | See Annex C 3, C 4      |
| Resistance to concrete edge failure                  | See Annex C 3, C 4      |
| Displacements under short term and long term loading | See Annex C 5           |
| Durability of metal parts                            | See Annex A 3           |
| Seismic performance C1 and C2                        |                         |
| Resistance to steel failure                          | See Annex C 6, C 7, C 8 |
| Resistance to pull-out                               | See Annex C 6, C 7, C 8 |
| Factor for annular gap                               | See Annex C 6, C 7, C 8 |
| Displacement                                         | See Annex C 8           |

#### 3.2 Hygiene, health and environment (BWR 3)

No performance determined.

#### 3.3 General aspects relating to fitness for use

Durability and serviceability are only ensured if the specifications of intended use according to Annex B 1 are kept.

# 4. Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base

According to the Decision 96/582/EC of the European Commission<sup>1</sup> the system of assessment verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table apply.

## Appendix 2/19

| Product           | Intended use                               | Level or class | System |
|-------------------|--------------------------------------------|----------------|--------|
| Metal anchors for | For fixing and/or supporting to concrete,  |                |        |
| use in concrete   | structural elements (which contributes to  | -              | 1      |
|                   | the stability of the works) or heavy units |                |        |

# 5. Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD

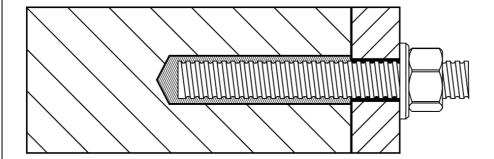
#### 5.1 Tasks of the manufacturer

The manufacturer may only use raw materials stated in the technical documentation of this European Technical Assessment.

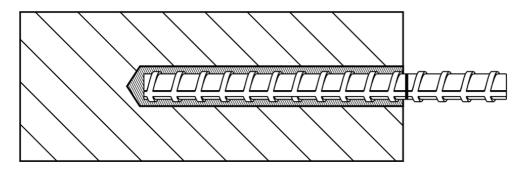
The factory production control shall be in accordance with the control plan which is a part of the technical documentation of this European Technical Assessment. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited at Technický a zkušební ústav stavební Praha, s.p.² The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

#### 5.2 Tasks of the notified bodies

The notified body shall retain the essential points of its actions referred to above and state the results obtained and conclusions drawn in a written report.

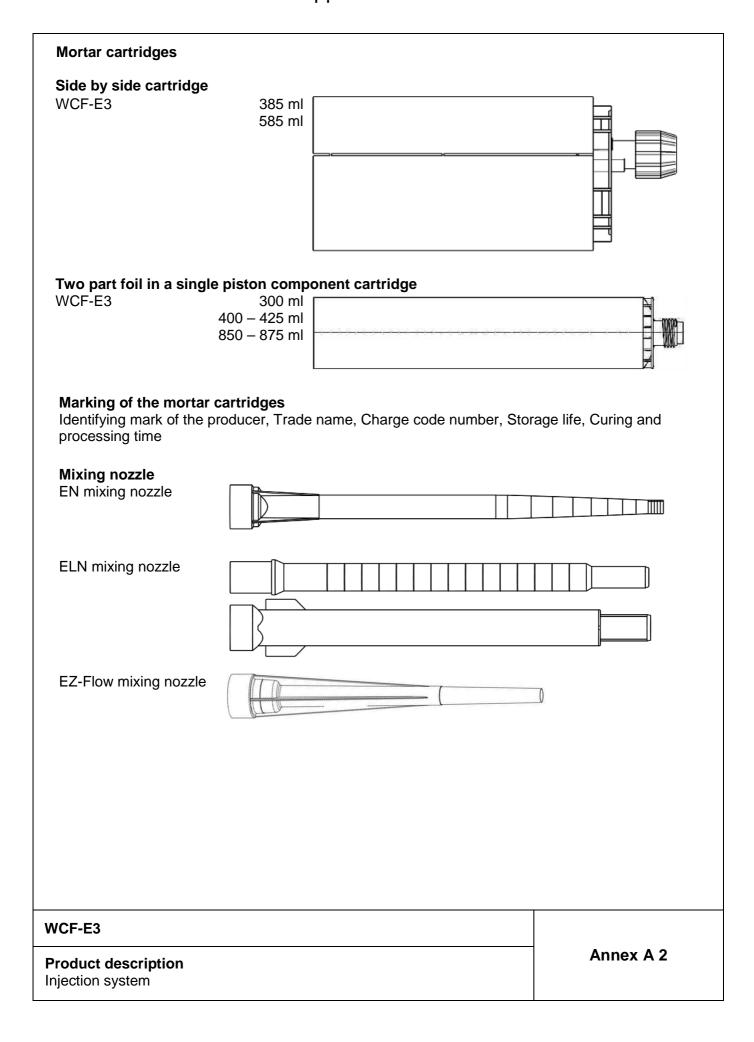

The notified certification body involved by the manufacturer shall issue a certificate of constancy of performance of the product stating the conformity with the provisions of this European Technical Assessment.

In cases where the provisions of the European Technical Assessment and its control plan are no longer fulfilled the notified body shall withdraw the certificate of constancy of performance and inform Technický a zkušební ústav stavební Praha, s.p without delay.


The control plan is a confidential part of the documentation of the European Technical Assessment, but not published together with the ETA and only handed over to the approved body involved in the procedure of AVCP.

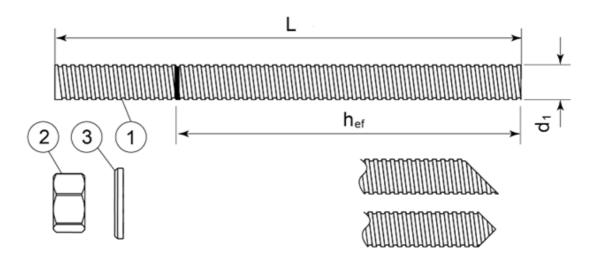
# Appendix 3/19

#### Threaded rod




## Reinforcing bar




| WCF-E3               |           |
|----------------------|-----------|
| Product description  | Annex A 1 |
| Installed conditions |           |

# Appendix 4/19



## Appendix 5/19

## Threaded rod M8, M10, M12, M16, M20, M24, M27, M30



Standard commercial threaded rod with marked embedment depth

| Part   | Designation                                                             | Material                                                                        |  |  |  |  |  |  |  |
|--------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|        | zinc plated ≥ 5 µm acc. to EN ISO 4042 or                               |                                                                                 |  |  |  |  |  |  |  |
|        | eel, Hot-dip galvanized ≥ 40 μm acc. to EN ISO 1461 and EN ISO 10684 or |                                                                                 |  |  |  |  |  |  |  |
|        | , zinc diffusion coating ≥ 15 μm acc. to EN 13811                       |                                                                                 |  |  |  |  |  |  |  |
| 1      | Anchor rod                                                              | Steel, EN 10087 or EN 10263<br>Property class 4.6, 5.8, 8.8, 10.9* EN ISO 898-1 |  |  |  |  |  |  |  |
| 2      | Hexagon nut<br>EN ISO 4032                                              | According to threaded rod, EN 20898-2                                           |  |  |  |  |  |  |  |
| 3      | Washer<br>EN ISO 887, EN ISO 7089,<br>EN ISO 7093 or EN ISO 7094        | According to threaded rod                                                       |  |  |  |  |  |  |  |
| Stainl | Stainless steel                                                         |                                                                                 |  |  |  |  |  |  |  |
| 1      | Anchor rod                                                              | Material: A2-70, A4-70, A4-80, EN ISO 3506                                      |  |  |  |  |  |  |  |
| 2      | Hexagon nut<br>EN ISO 4032                                              | According to threaded rod                                                       |  |  |  |  |  |  |  |
| 3      | Washer<br>EN ISO 887, EN ISO 7089,<br>EN ISO 7093 or EN ISO 7094        | According to threaded rod                                                       |  |  |  |  |  |  |  |
| High   | corrosion resistant steel                                               |                                                                                 |  |  |  |  |  |  |  |
| 1      | Anchor rod                                                              | Material: 1.4529, 1.4565, EN 10088-1                                            |  |  |  |  |  |  |  |
| 2      | Hexagon nut<br>EN ISO 4032                                              | According to threaded rod                                                       |  |  |  |  |  |  |  |
| 3      | Washer<br>EN ISO 887, EN ISO 7089,<br>EN ISO 7093 or EN ISO 7094        | According to threaded rod                                                       |  |  |  |  |  |  |  |

<sup>\*</sup>Galvanized rod of high strength are sensitive to hydrogen induced brittle failure

| WCF-E3                                         |           |
|------------------------------------------------|-----------|
| Product description Threaded rod and materials | Annex A 3 |

# Appendix 6/19

Rebar Ø8, Ø10, Ø12, Ø16, Ø20, Ø25, Ø32



## Standard commercial reinforcing bar with marked embedment depth

| Product form                                           | Bars and de              | -coiled rods     |        |  |
|--------------------------------------------------------|--------------------------|------------------|--------|--|
| Class                                                  |                          | В                | С      |  |
| Characteristic yield strength fyk or fo                | <sub>0,2k</sub> (MPa)    | 400 to           | o 600  |  |
| Minimum value of $k = (f_t/f_y)_k$                     |                          | ≥ 1,08           | ≥ 1,15 |  |
|                                                        |                          | 2 1,00           | < 1,35 |  |
| Characteristic strain at maximum for                   | orce ε <sub>uk</sub> (%) | ≥ 5,0            | ≥ 7,5  |  |
| Bendability                                            |                          | Bend/Rebend test |        |  |
| Maximum deviation from nominal                         |                          |                  |        |  |
| mass (individual bar) (%)                              | ≤ 8                      | ±6,0             |        |  |
|                                                        | ±4                       | <del>,</del> ,5  |        |  |
| Bond: Minimum relative rib area, Nominal bar size (mm) |                          |                  |        |  |
| $f_{R,min}$                                            | 0,040                    |                  |        |  |
|                                                        | > 12                     | 0,0              | )56    |  |

| WCF-E3                                   |           |
|------------------------------------------|-----------|
| Product description Rebars and materials | Annex A 4 |

## Appendix 7/19

#### Specifications of intended use

#### Anchorages subject to:

- · Static and quasi-static load
- Seismic actions category C1 (max w = 0,5 mm):
  - threaded rod size M8, M10, M12, M16, M20, M24, M27, M30
  - rebar size Ø10, Ø12, Ø16, Ø20, Ø25, Ø32
- Seismic actions category C2 (max w = 0,8 mm): threaded rod size M12, M16, M20

#### **Base materials**

- Cracked and uncracked concrete
- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum and C50/60 at maximum according EN 206:2013.

#### Temperature range:

• T3: -40°C to +70°C (max. short. term temperature +70°C and max. long term temperature +50°C)

#### **Use conditions (Environmental conditions)**

- (X1) Structures subject to dry internal conditions (zinc coated steel, stainless steel, high corrosion resistance steel).
- (X2) Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel A4, high corrosion resistant steel).
- (X3) Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

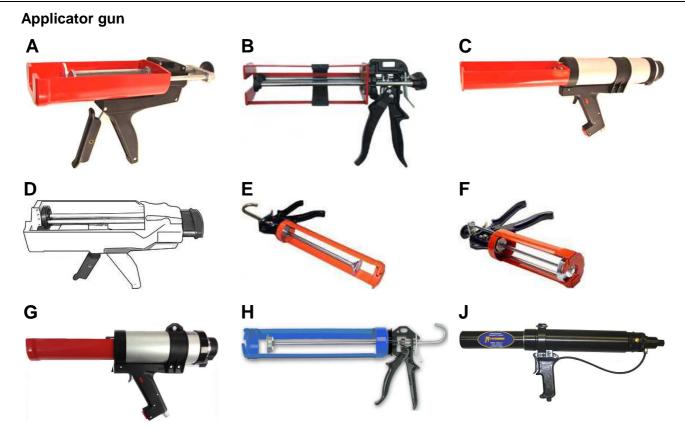
#### **Concrete conditions:**

- I1 installation in dry or wet (water saturated) concrete and use in service in dry or wet concrete.
- 12 installation in water-filled (not sea water) and use in service in dry or wet concrete

#### Design:

- The anchorages are designed in accordance with the EN 1992-4 under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored.
   The position of the anchor is indicated on the design drawings.
- Anchorages under seismic actions (cracked concrete) have to be designed in accordance with EN 1992-4.

#### Installation:


- Hole drilling by hammer drill mode.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

#### Installation direction:

D3 – downward and horizontal and upwards (e.g. overhead) installation

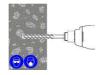
| WCF-E3                         |           |
|--------------------------------|-----------|
| Intended use<br>Specifications | Annex B 1 |

# Appendix 8/19

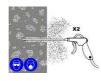


| Applicator gun | А                      | В                          | В                |                        | С                        | D                      |  |
|----------------|------------------------|----------------------------|------------------|------------------------|--------------------------|------------------------|--|
| Cartridge      | Side by side<br>385 ml | Side by :<br>385 m         |                  | Side by side<br>385 ml |                          | Side by side<br>585 ml |  |
| Applicator gun | Е                      | F                          | F (              |                        | Н                        | J                      |  |
| Cartridge      | Foil capsule<br>300 ml | Foil capsule<br>400-425 ml | Foil ca<br>400-4 | •                      | Foil Capsul<br>850-875 m |                        |  |

# Cleaning steel brush


**Brush extensions** 

| WCF-E3          |              |
|-----------------|--------------|
| Intended use    | Annex B 2    |
| Applicator guns | / iiiiox 2 2 |
| Cleaning brush  |              |


#### Installation instructions

Before commencing installation ensure the operative is equipped with appropriate personal protection equipment, SDS Hammer Drill, Air, Hole Cleaning Brush, good quality Dispensing Tool - either manual or power operated, Chemical cartridge with mixing nozzle and extension tube, if needed.

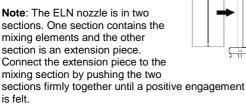
1. Using the SDS Hammer Drill in rotary hammer mode for drilling, with a carbide tipped drill bit of the appropriate size, drill the hole to the specified hole diameter and depth.



2. Insert the Air Lance to the bottom of the hole and depress the trigger for 2 seconds. The compressed air must be clean - free from water and oil - and at a minimum pressure of 6bar.



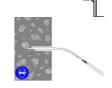
#### Perform the blowing operation twice.


Select the correct size Hole Cleaning Brush. Ensure that the brush is in good condition and the correct diameter. Insert the brush to the bottom of the hole, using a brush



extension if needed to reach the bottom of the hole and withdraw with a twisting motion. There should be positive interaction between the steel bristles of the brush and the sides of the drilled hole.

#### Perform the brushing operation twice.


- 4. Repeat 2
- 5. Repeat 3
- 6. Repeat 2
- 7. Select the appropriate static mixer nozzle, checking that the mixing elements are present and correct (do not modify the mixer). Attach mixer nozzle to the cartridge. Check the Dispensing Tool is in good working order. Place the cartridge into the dispensing tool.





8. Extrude some resin to waste until an even-colored mixture is extruded, The cartridge is now ready for use

9. Attach an extension tube with resin stopper (if required) to the end of the mixing nozzle with a push fit



(The extension tubes may be pushed into the resin stoppers and are held in place with a coarse internal thread).

10. Insert the mixing nozzle to the bottom of the hole. Extrude the resin and slowly withdraw the nozzle from the hole. Ensure no air voids are created as the nozzle is withdrawn. Inject resin until the hole is approximately 3/4 full and remove the nozzle from the hole.



11. Select the steel anchor element ensuring it is free from oil or other contaminants, and mark with the required embedment depth. Insert the steel element into the hole using a back and forth twisting



- motion to ensure complete cover, until it reaches the bottom of the hole. Excess resin will be expelled from the hole evenly around the steel element and there shall be no gaps between the anchor element and the wall of the drilled hole.
- 12. Clean any excess resin from around the mouth of the hole.
- 13. Do not disturb the anchor until at least the minimum cure time has elapsed. Refer to the Working and Load Timetable to determine the appropriate cure time.

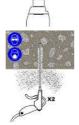


14. Position the fixture and tighten the anchor to the appropriate installation torque.



Do not over-torque the anchor as this could adversely affect its performance.

#### WCF-E3

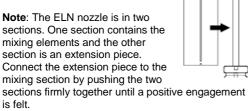

#### Intended use Installation procedure

Annex B 3

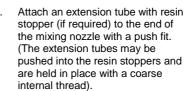
#### Installation instructions

#### **Overhead Substrate Installation Method**

- Using the SDS Hammer Drill in rotary hammer mode for drilling, with a carbide tipped drill bit of the appropriate size, drill the hole to the specified hole diameter and depth.
- Select the correct Air Lance, insert to the bottom of the hole and depress the trigger for 2 seconds. The compressed air must be clean – free from water and oil – and at a minimum pressure of 90psi (6bar).




#### Perform the blowing operation twice.


B. Select the correct size Hole Cleaning Brush. Ensure that the brush is in good condition and the correct diameter. Insert the brush to the bottom of the hole, using a brush extension if needed to reach the bottom of the hole, and withdraw with a twisting motion. There should be positive interaction between the steel bristles of the brush and the sides of the drilled hole.

#### Perform the brushing operation twice.

- 4. Repeat 2
- 5. Repeat 3
- 6. Repeat 2
- 7. Select the appropriate static mixer nozzle checking that the mixing elements are present and correct (do not modify the mixer). Attach mixer nozzle to the cartridge. Check the Dispensing Tool is in good working order. Place the cartridge into the dispensing tool.



 Extrude some resin to waste until an even-colored mixture is extruded, The cartridge is now ready for use.





10. Insert the mixing nozzle to the bottom of the hole. Extrude the resin and slowly withdraw the nozzle from the hole. Ensure no air voids are created as the nozzle is withdrawn. Inject resin until the hole is approximately ¾ full and remove the nozzle from the hole.



11. Select the steel anchor element ensuring it is free from oil or other contaminants, and mark with the required embedment depth. Insert the steel element into the hole using a back and forth twisting motion to ensure complete cover, until it reaches the bottom of the hole.



Excess resin will be expelled from the hole evenly around the steel element and there shall be no gaps between the anchor element and the wall of the drilled hole.

Clean any excess resin from around the mouth of the hole.

 Do not disturb the anchor until at least the minimum cure time has elapsed. Refer to the Working and Load Timetable to determine the appropriate cure time.



 Position the fixture and tighten the anchor to the appropriate installation torque.

Do not over-torque the anchor as this could adversely affect its performance.



WCF-E3

Intended use
Installation procedure

Annex B 4

# Appendix 11/19

Table B1: Installation parameters of threaded rod

| Size                        |                       |      | M8                               | M10                | M12                | M16                | M20                | M24                               | M27                | M30                |
|-----------------------------|-----------------------|------|----------------------------------|--------------------|--------------------|--------------------|--------------------|-----------------------------------|--------------------|--------------------|
| Nominal drill hole diameter | $\emptyset d_0$       | [mm] | 10                               | 12                 | 14                 | 18                 | 22                 | 26                                | 30                 | 35                 |
| Cleaning brush              |                       |      | S11HF                            | S14HF              | S14/15HF           | S22HF              | S24HF              | S31HF                             | S31HF              | S38HF              |
| Torque moment               | max T <sub>fixt</sub> | [Nm] | 10                               | 20                 | 40                 | 80                 | 120                | 160                               | 180                | 200                |
| Embedment depth for hef,min | h <sub>ef</sub>       | [mm] | 60                               | 60                 | 70                 | 80                 | 90                 | 96                                | 108                | 120                |
| Embedment depth for hef,max | h <sub>ef</sub>       | [mm] | 160                              | 200                | 240                | 320                | 400                | 480                               | 540                | 600                |
| Depth of drill hole         | $h_0$                 | [mm] | h <sub>ef</sub> +5               | h <sub>ef</sub> +5 | h <sub>ef</sub> +5 | h <sub>ef</sub> +5 | h <sub>ef</sub> +5 | h <sub>ef</sub> +5                | h <sub>ef</sub> +5 | h <sub>ef</sub> +5 |
| Minimum edge distance       | Cmin                  | [mm] | 40                               | 40                 | 40                 | 40                 | 50                 | 50                                | 50                 | 60                 |
| Minimum spacing             | Smin                  | [mm] | 40                               | 40                 | 40                 | 40                 | 50                 | 50                                | 50                 | 60                 |
| Minimum thickness of member | h <sub>min</sub>      | [mm] | h <sub>ef</sub> + 30 mm ≥ 100 mm |                    |                    |                    |                    | h <sub>ef</sub> + 2d <sub>0</sub> |                    |                    |

Table B2: Installation parameters of rebar

| Size                        |                       |      | Ø8                  | Ø10                | Ø12                | Ø16                               | Ø20                | Ø25                | Ø32                |  |  |
|-----------------------------|-----------------------|------|---------------------|--------------------|--------------------|-----------------------------------|--------------------|--------------------|--------------------|--|--|
| Nominal drill hole diameter | $ \emptyset d_0 $     | [mm] | 12                  | 14                 | 16                 | 20                                | 25                 | 32                 | 40                 |  |  |
| Cleaning brush              |                       |      | S12/13HF            | S14/15HF           | S18HF              | S22HF                             | S27HF              | S35HF              | S43HF              |  |  |
| Torque moment               | max T <sub>fixt</sub> | [Nm] | 10                  | 20                 | 40                 | 80                                | 120                | 180                | 200                |  |  |
| Embedment depth for hef,min | h <sub>ef</sub>       | [mm] | 60                  | 60                 | 70                 | 80                                | 90                 | 100                | 128                |  |  |
| Embedment depth for hef,max | hef                   | [mm] | 160                 | 200                | 240                | 320                               | 400                | 500                | 640                |  |  |
| Depth of drill hole         | h <sub>0</sub>        | [mm] | h <sub>ef</sub> +5  | h <sub>ef</sub> +5 | h <sub>ef</sub> +5 | h <sub>ef</sub> +5                | h <sub>ef</sub> +5 | h <sub>ef</sub> +5 | h <sub>ef</sub> +5 |  |  |
| Minimum edge distance       | Cmin                  | [mm] | 40                  | 40                 | 40                 | 40                                | 50                 | 50                 | 70                 |  |  |
| Minimum spacing             | Smin                  | [mm] | 40                  | 40                 | 40                 | 40                                | 50                 | 50                 | 70                 |  |  |
| Minimum thickness of member | h <sub>min</sub>      | [mm] | h <sub>ef</sub> + 3 | 30 mm ≥ 100        | ) mm               | h <sub>ef</sub> + 2d <sub>0</sub> |                    |                    |                    |  |  |

Table B3: Minimum curing time

| Table Bo. William caring th |                           |        |        |
|-----------------------------|---------------------------|--------|--------|
| Base Material Temperature   | Cartridge                 | T Work | T Load |
| [°C]                        | Temperature [°C]          | [mins] | [hrs]  |
| +5                          |                           | 300    | 24     |
| +5°C to +10                 | Minimum +10               | 150    | 24     |
| +10°C to +15                | +10°C to +15              | 40     | 18     |
| +15°C to +20                | +15°C to +20              | 25     | 12     |
| +20°C to +25                | +20°C to +25              | 18     | 8      |
| +25°C to +30                | +25°C to +30              | 12     | 6      |
| +30°C to +35                | +30°C to +35              | 8      | 4      |
| +35°C to +40                | +35°C to +40              | 6      | 2      |
|                             | Ensure cartridge is ≥ 10° | C      |        |

T Work is typical gel time at highest base material temperature in the range.

| WCF-E3                                           |           |
|--------------------------------------------------|-----------|
| Intended use Installation parameters Curing time | Annex B 5 |

T Load is minimum set time required until load can be applied at the lowest temperature in the range.

# Appendix 12/19

**Table C1:** Design method EN 1992-4 Characteristic values of resistance to tension load of threaded rod

| Steel failure - Characteristic resis                    | stance            |                |                    |          |      |     |     |     |      |                   |       |        |       |
|---------------------------------------------------------|-------------------|----------------|--------------------|----------|------|-----|-----|-----|------|-------------------|-------|--------|-------|
| Size                                                    |                   |                | N                  | /18      | M1   | 0   | M12 | 2 M | 16   | M20               | M24   | M27    | M30   |
| Steel grade <b>4.6</b>                                  | $N_{Rk,s}$        | [k             | (N]                | 15       | 23   | 3   | 34  | 6   | 3    | 98                | 141   | 184    | 224   |
| Partial safety factor                                   | γMs               | [              | [-]                |          |      |     |     |     | 2,00 | )                 |       |        |       |
| Steel grade <b>5.8</b>                                  | $N_{Rk,s}$        | [k             | (N] ′              | 18       | 29   | 9   | 42  | 7   | '9   | 123               | 177   | 230    | 281   |
| Partial safety factor                                   | γMs               |                | [-]                |          |      |     |     |     | 1,50 | )                 |       |        |       |
| Steel grade 8.8                                         | N <sub>Rk,s</sub> | [k             | (N) 2              | 29       | 46   | 3   | 67  | 1:  | 26   | 196               | 282   | 367    | 449   |
| Partial safety factor                                   | γMs               |                | [-]                |          |      |     |     |     | 1,50 | )                 |       |        |       |
| Steel grade 10.9                                        | N <sub>Rk,s</sub> | [k             | (N) 3              | 37       | 58   | 3   | 84  | 1:  | 57   | 245               | 353   | 459    | 561   |
| Partial safety factor                                   | γMs               | -              | -1                 |          |      |     |     |     | 1,33 | 3                 |       |        |       |
| Stainless steel grade A2-70, A4-70                      | N <sub>Rk,s</sub> | [k             | (N) 2              | 26       | 41   | 1   | 59  | 1   | 10   | 172               | 247   | 321    | 393   |
| Partial safety factor                                   | γMs               |                | -1                 |          |      |     |     |     | 1,87 | 7                 |       | 1      | 1     |
| Stainless steel grade A4-80                             | $N_{Rk,s}$        | _              |                    | 29       | 46   | 6   | 67  | 1:  | 26   | 196               | 282   | 367    | 449   |
| Partial safety factor                                   | γMs               |                | -1                 |          |      | - 1 |     |     | 1,60 |                   |       | 1      | 1     |
| Stainless steel grade 1.4529                            | $N_{Rk,s}$        |                |                    | 26       | 41   | 1   | 59  | 1   |      | 172               | 247   | 321    | 393   |
| Partial safety factor                                   | γMs               |                | [-]                |          |      |     |     | -   | 1,50 |                   |       |        |       |
| Stainless steel grade 1.4565                            | N <sub>Rk,s</sub> | _              |                    | 26       | 41   | 1   | 59  | 1   | 10   | 172               | 247   | 321    | 393   |
| Partial safety factor                                   | γMs               |                | -1                 |          |      | - 1 |     |     | 1,87 |                   |       |        |       |
| Combined pullout and concrete c                         |                   | _              | oncrete            | C20      | )/25 |     |     |     | ,    |                   |       |        |       |
| Size                                                    |                   |                |                    |          | M8   | M1  | 10  | M12 | M16  | M2                | 0 M2  | 4 M2   | 7 M3  |
| Characteristic bond resistance in                       | uncracked         | con            | crete              | - "      |      |     |     |     |      |                   |       | ı.     |       |
| Temperature T3: -40°C to +70°C                          | τRI               | c,ucr          | [N/mm <sup>2</sup> | ] [      | 14   | 1:  | 3   | 13  | 12   | 12                | 11    | 10     | 9     |
| Dry, wet concrete, flooded hole                         |                   |                |                    |          |      |     |     |     |      |                   | •     |        |       |
| Partial safety factor                                   | γ                 | /inst          | [-]                |          |      |     |     |     | •    | 1,0               |       |        |       |
|                                                         | C25/30            |                |                    |          |      |     |     |     | 1    | ,02               |       |        |       |
|                                                         | C30/37            |                |                    |          |      |     |     |     | 1    | ,04               |       |        |       |
| Factor for uncracked concrete                           | C35/45            |                | [-]                |          |      |     |     |     |      | ,06               |       |        |       |
| actor for uncracked concrete                            | C40/50            | μc             | [ ]                |          |      |     |     |     |      | ,07               |       |        |       |
|                                                         | C45/55            |                |                    |          |      |     |     |     |      | ,08               |       |        |       |
|                                                         | C50/60            |                |                    |          |      |     |     |     | 1    | ,09               |       |        |       |
| Characteristic bond resistance in                       | cracked co        | ncre           |                    |          |      |     |     |     |      |                   |       |        |       |
| Temperature T3: -40°C to +70°C                          | τ <sub>F</sub>    | Rk,cr          | [N/mm <sup>2</sup> | ]        | 8    | 8   | 3   | 7,5 | 7,5  | 7                 | 7     | 5      | 5     |
| Dry, wet concrete, flooded hole                         |                   |                |                    |          |      |     |     |     |      |                   |       |        |       |
| Partial safety factor                                   |                   | inst           | [-]                |          |      |     |     |     |      | 1,0               |       |        |       |
|                                                         | C25/30            |                |                    |          |      |     |     |     |      | ,02               |       |        |       |
|                                                         | C30/37            |                |                    |          |      |     |     |     |      | ,04               |       |        |       |
| Factor for cracked concrete                             | C35/45            | μ <sub>c</sub> | [-]                |          |      |     |     |     |      | ,06               |       |        |       |
|                                                         | C40/30            | <b>"</b>       |                    |          |      |     |     |     |      | ,07               |       |        |       |
|                                                         | C45/55            |                |                    |          |      |     |     |     | 1    | ,08               |       |        |       |
| Canavata aana failura                                   | C50/60            |                |                    |          |      |     |     |     | 1    | ,09               |       |        |       |
| Concrete cone failure                                   |                   |                |                    | _        |      |     |     |     |      |                   |       |        |       |
| Factor for concrete cone failure                        | k <sub>ucr,</sub> | N              |                    |          |      |     |     |     | •    | 11                |       |        |       |
| for uncracked concrete Factor for concrete cone failure |                   | -              | [-]                | $\vdash$ |      |     |     |     |      |                   |       |        |       |
| for cracked concrete                                    | k <sub>cr,</sub>  | N              | -                  |          |      |     |     |     | 7    | 7,7               |       |        |       |
| Edge distance                                           |                   | _              | [mm]               | +        |      |     |     |     | 1    | 5h <sub>ef</sub>  |       |        |       |
| Splitting failure                                       | C <sub>cr,</sub>  | N              | [mm]               |          |      |     |     |     | 1,   | Ullef             |       |        |       |
|                                                         |                   |                |                    |          | MO   | P.4 | 10  | Maa | MAG  | BAO:              | 0 840 | 4 NAO: | 7 M3  |
| Size                                                    |                   | 1              | [                  | +        | М8   | M1  | IU  | M12 |      | M2                | 0 M2  | + IVIZ | IVI 3 |
| Edge distance                                           | C <sub>cr,</sub>  |                | [mm]               | +        |      |     |     |     |      | • h <sub>ef</sub> |       |        |       |
| Spacing                                                 | S <sub>cr</sub> , | sp             | [mm]               |          |      |     |     |     | 2 •  | Ccr,sp            |       |        |       |

| WCF-E3                  |                                      |           |
|-------------------------|--------------------------------------|-----------|
| Performances            |                                      | Annex C 1 |
| Design according to E   | N 1992-4                             |           |
| Characteristic resistar | nce for tension loads - threaded rod |           |

# Appendix 13/19

**Table C2:** Design method EN 1992-4 Characteristic values of resistance to tension load of rebar

| Steel failure - Characteristic resistance |            |      |    |     |     |     |     |     |     |
|-------------------------------------------|------------|------|----|-----|-----|-----|-----|-----|-----|
| Size                                      |            |      | Ø8 | Ø10 | Ø12 | Ø16 | Ø20 | Ø25 | Ø32 |
| Rebar BSt 500 S                           | $N_{Rk,s}$ | [kN] | 28 | 43  | 62  | 111 | 173 | 270 | 442 |
| Partial safety factor                     | γMs        | [-]  |    |     |     | 1,4 |     |     |     |

| Pullout failure in concrete C20/25 |                                                          |                      |                                              |     |     |                              |     |     |     |  |  |
|------------------------------------|----------------------------------------------------------|----------------------|----------------------------------------------|-----|-----|------------------------------|-----|-----|-----|--|--|
| Size                               |                                                          |                      | Ø8                                           | Ø10 | Ø12 | Ø16                          | Ø20 | Ø25 | Ø32 |  |  |
| Characteristic bond resistance in  | uncracked co                                             | ncrete               |                                              |     |     |                              |     |     |     |  |  |
| Temperature T3: -40°C to +70°C     | τ <sub>Rk,ucr</sub>                                      | [N/mm <sup>2</sup> ] | 12                                           | 12  | 12  | 11                           | 11  | 11  | 7   |  |  |
| Dry and wet concrete               |                                                          |                      |                                              |     |     |                              |     |     |     |  |  |
| Installation safety factor         | γinst                                                    | [-]                  | 1,0                                          |     |     |                              |     |     |     |  |  |
| Flooded hole                       |                                                          |                      |                                              |     |     |                              |     |     |     |  |  |
| Installation safety factor         | γinst                                                    | [-]                  |                                              |     |     | 1,2                          |     |     |     |  |  |
| Factor for uncracked concrete      | C25/30<br>C30/37<br>C35/45<br>C40/50 Ψ <sup>c</sup>      | [-]                  |                                              |     |     | 1,02<br>1,04<br>1,06<br>1,07 |     |     |     |  |  |
|                                    | C45/55<br>C50/60                                         |                      | 1,08<br>1,09                                 |     |     |                              |     |     |     |  |  |
| Characteristic bond resistance in  | cracked conc                                             | rete                 |                                              |     |     |                              |     |     |     |  |  |
| Temperature T3: -40°C to +70°C     | τ <sub>Rk,cr</sub>                                       | $[N/mm^2]$           | 7                                            | 10  | 9   | 9                            | 8   | 8   | 5   |  |  |
| Dry and wet concrete               |                                                          |                      |                                              |     |     |                              |     |     |     |  |  |
| Installation safety factor         | γinst                                                    | [-]                  |                                              |     |     | 1,0                          |     |     |     |  |  |
| Flooded hole                       |                                                          |                      |                                              |     |     |                              |     |     |     |  |  |
| Installation safety factor         | γinst                                                    | [-]                  |                                              |     |     | 1,2                          |     |     |     |  |  |
| Factor for cracked concrete        | C25/30<br>C30/37<br>C35/45<br>C40/50<br>C45/55<br>C50/60 | [-]                  | 1,02<br>1,04<br>1,06<br>1,07<br>1,08<br>1,09 |     |     |                              |     |     |     |  |  |

| Concrete cone failure                                   |                   |      |                    |
|---------------------------------------------------------|-------------------|------|--------------------|
| Factor for concrete cone failure for uncracked concrete | <b>k</b> ucr,N    | [1   | 11                 |
| Factor for concrete cone failure for cracked concrete   | k <sub>cr,N</sub> | [-]  | 7,7                |
| Edge distance                                           | Ccr,N             | [mm] | 1,5h <sub>ef</sub> |

| Splitting failure |        |      |                        |     |     |     |     |     |     |  |
|-------------------|--------|------|------------------------|-----|-----|-----|-----|-----|-----|--|
| Size              |        |      | Ø8                     | Ø10 | Ø12 | Ø16 | Ø20 | Ø25 | Ø32 |  |
| Edge distance     | Ccr,sp | [mm] | 2 • h <sub>ef</sub>    |     |     |     |     |     |     |  |
| Spacing           | Scr,sp | [mm] | 2 • C <sub>cr,sp</sub> |     |     |     |     |     |     |  |

| WCF-E3                                              |           |
|-----------------------------------------------------|-----------|
| Performances                                        | Annex C 2 |
| Design according to EN 1992-4                       |           |
| Characteristic resistance for tension loads - rebar |           |

# Appendix 14/19

**Table C3:** Design method EN 1992-4 Characteristic values of resistance to shear load of threaded rod

| Steel failure without lever arm                  |               |                     |      |     |     |     |     |     |     |     |
|--------------------------------------------------|---------------|---------------------|------|-----|-----|-----|-----|-----|-----|-----|
| Size                                             |               |                     | M8   | M10 | M12 | M16 | M20 | M24 | M27 | M30 |
| Steel grade 4.6                                  | $V_{Rk,s}$    | [kN]                | 7    | 12  | 17  | 31  | 49  | 71  | 92  | 112 |
| Partial safety factor                            | γMs           | [-]                 | 1,67 |     |     |     |     |     |     |     |
| Steel grade 5.8                                  | $V_{Rk,s}$    | [kN]                | 9    | 15  | 21  | 39  | 61  | 88  | 115 | 140 |
| Partial safety factor                            | γMs           | [-]                 |      |     |     | 1,  | ,25 |     |     |     |
| Steel grade 8.8                                  | $V_{Rk,s}$    | [kN]                | 15   | 23  | 34  | 63  | 98  | 141 | 184 | 224 |
| Partial safety factor                            | γMs           | [-]                 |      |     |     | 1,  | ,25 |     |     |     |
| Steel grade 10.9                                 | $V_{Rk,s}$    | [kN]                | 18   | 29  | 42  | 79  | 123 | 177 | 230 | 281 |
| Partial safety factor                            | γMs           | [-]                 | 1,5  |     |     |     |     |     |     |     |
| Stainless steel grade A2-70, A4-70               | $V_{Rk,s}$    | [kN]                | 13   | 20  | 30  | 55  | 86  | 124 | 161 | 196 |
| Partial safety factor                            | γMs           | [-]                 |      |     |     | 1,  | ,56 |     |     |     |
| Stainless steel grade A4-80                      | $V_{Rk,s}$    | [kN]                | 15   | 23  | 34  | 63  | 98  | 141 | 184 | 224 |
| Partial safety factor                            | γMs           | [-]                 |      |     |     | 1,  | ,33 |     |     |     |
| Stainless steel grade 1.4529                     | $V_{Rk,s}$    | [kN]                | 13   | 20  | 30  | 55  | 86  | 124 | 161 | 196 |
| Partial safety factor                            | γMs           | [-]                 |      |     |     | 1,  | ,25 |     |     |     |
| Stainless steel grade 1.4565                     | $V_{Rk,s}$    | [kN]                | 13   | 20  | 30  | 55  | 86  | 124 | 161 | 196 |
| Partial safety factor                            | γMs           | [-]                 | 1,56 |     |     |     |     |     |     |     |
| Characteristic resistance of group of faste      | eners         |                     |      |     |     |     |     |     |     |     |
| Ductility factor $k_7 = 1.0$ for steel with rupt | ture elongati | on A <sub>5</sub> > | - 8% | •   |     | •   |     |     |     |     |

| Steel failure with lever arm             |                    |       |    |     |     |     |     |      |      |      |
|------------------------------------------|--------------------|-------|----|-----|-----|-----|-----|------|------|------|
| Size                                     |                    |       | M8 | M10 | M12 | M16 | M20 | M24  | M27  | M30  |
| Steel grade 4.6                          | $M^{o}_{Rk,s}$     | [N.m] | 15 | 30  | 52  | 133 | 260 | 449  | 666  | 900  |
| Partial safety factor                    | γMs                | [-]   |    |     |     | 1,  | ,67 |      |      |      |
| Steel grade 5.8                          | ${\sf M^o_{Rk,s}}$ | [N.m] | 19 | 37  | 66  | 166 | 325 | 561  | 832  | 1125 |
| Partial safety factor                    | γMs                | [-]   |    |     |     | 1,  | ,25 |      |      |      |
| Steel grade 8.8                          | $M^{o}_{Rk,s}$     | [N.m] | 30 | 60  | 105 | 266 | 519 | 898  | 1332 | 1799 |
| Partial safety factor                    | γMs                | [-]   |    |     |     | 1,  | ,25 |      |      |      |
| Steel grade 10.9                         | $M^{o}_{Rk,s}$     | [N.m] | 37 | 75  | 131 | 333 | 649 | 1123 | 1664 | 2249 |
| Partial safety factor                    | γMs                | [-]   |    |     |     | 1,  | ,50 |      |      |      |
| Stainless steel grade A2-70, A4-70       | $M^o_{Rk,s}$       | [N.m] | 26 | 52  | 92  | 233 | 454 | 786  | 1165 | 1574 |
| Partial safety factor                    | γMs                | [-]   |    |     |     | 1,  | ,56 |      |      |      |
| Stainless steel grade A4-80              | $M^{o}_{Rk,s}$     | [N.m] | 30 | 60  | 105 | 266 | 519 | 898  | 1332 | 1799 |
| Partial safety factor                    | γMs                | [-]   |    |     |     | 1,  | ,33 |      |      |      |
| Stainless steel grade 1.4529             | $M^{o}_{Rk,s}$     | [N.m] | 26 | 52  | 92  | 233 | 454 | 786  | 1165 | 1574 |
| Partial safety factor                    | γMs                | [-]   |    |     |     | 1,  | ,25 |      |      |      |
| Stainless steel grade 1.4565             | $M^{o}_{Rk,s}$     | [N.m] | 26 | 52  | 92  | 233 | 454 | 786  | 1165 | 1574 |
| Partial safety factor                    | γMs                | [-]   |    | •   | •   | 1   | ,56 | •    |      | •    |
| Concrete pryout failure                  |                    |       |    |     |     |     |     |      |      |      |
| Factor for resistance to pry-out failure | k <sub>8</sub>     | [-]   |    |     | •   | •   | 2   | •    |      |      |

| Concrete edge failure            |        |    |     |     |                      |                      |     |     |     |
|----------------------------------|--------|----|-----|-----|----------------------|----------------------|-----|-----|-----|
| Size                             |        | M8 | M10 | M12 | M16                  | M20                  | M24 | M27 | M30 |
| Outside diameter of fastener dno | n [mm] | 8  | 10  | 12  | 16                   | 20                   | 24  | 27  | 30  |
| Effective length of fastener     | f [mm] |    |     | r   | nin (h <sub>ef</sub> | , 8 d <sub>nom</sub> | n)  |     |     |

| WCF-E3                                                   |           |
|----------------------------------------------------------|-----------|
| Performances                                             | Annex C 3 |
| Design according to EN 1992-4                            |           |
| Characteristic resistance for shear loads - threaded rod |           |

# Appendix 15/19

### **Table C4:** Design method EN 1992-4 Characteristic values of resistance to shear load of rebar

| Steel failure without lever arm    |                                                 |          |           |           |                   |     |     |     |     |  |
|------------------------------------|-------------------------------------------------|----------|-----------|-----------|-------------------|-----|-----|-----|-----|--|
| Size                               |                                                 |          | Ø8        | Ø10       | Ø12               | Ø16 | Ø20 | Ø25 | Ø32 |  |
| Rebar BSt 500 S                    | $V_{Rk,s}$                                      | [kN]     | 14        | 22        | 31                | 55  | 86  | 135 | 221 |  |
| Partial safety factor              | γMs                                             | [-]      | 1,5       |           |                   |     |     |     |     |  |
| Characteristic resistance of group | Characteristic resistance of group of fasteners |          |           |           |                   |     |     |     |     |  |
| Ductility factor                   | $k_7 = 1,0$ for steel v                         | with rup | ture elor | ngation A | 5 <b>&gt; 8</b> % |     | •   | •   |     |  |

| Steel failure with lever arm             |                          |    |     |     |     |     |      |      |
|------------------------------------------|--------------------------|----|-----|-----|-----|-----|------|------|
| Size                                     |                          | Ø8 | Ø10 | Ø12 | Ø16 | Ø20 | Ø25  | Ø32  |
| Rebar BSt 500 S                          | Mº <sub>Rk,s</sub> [N.m] | 33 | 65  | 112 | 265 | 518 | 1013 | 2122 |
| Partial safety factor                    | γMs [-]                  |    |     |     | 1,5 |     |      |      |
| Concrete pryout failure                  |                          |    |     |     |     |     |      |      |
| Factor for resistance to pry-out failure | k <sub>8</sub> [-]       |    |     |     | 2   |     |      |      |

| Concrete edge failure                    |     |                                             |     |     |     |     |     |     |
|------------------------------------------|-----|---------------------------------------------|-----|-----|-----|-----|-----|-----|
| Size                                     |     | Ø8                                          | Ø10 | Ø12 | Ø16 | Ø20 | Ø25 | Ø32 |
| Outside diameter of fastener dnom [I     | mm] | 8                                           | 10  | 12  | 16  | 20  | 25  | 32  |
| Effective length of fastener $\ell_f$ [I | mm] | min (h <sub>ef</sub> , 8 d <sub>nom</sub> ) |     |     |     |     |     |     |

| WCF-E3                                            |           |
|---------------------------------------------------|-----------|
| Performances                                      | Annex C 4 |
| Design according to EN 1992-4                     |           |
| Characteristic resistance for shear loads - rebar |           |

# Appendix 16/19

Table C5: Displacement of threaded rod under tension and shear load

| Size                |                    | M8   | M10  | M12  | M16  | M20  | M24  | M27  | M30  |  |  |
|---------------------|--------------------|------|------|------|------|------|------|------|------|--|--|
| Tensio              | on load            |      |      |      |      |      |      |      |      |  |  |
| Uncra               | Uncracked concrete |      |      |      |      |      |      |      |      |  |  |
| δνο                 | [mm/kN]            | 0,03 | 0,02 | 0,02 | 0,02 | 0,01 | 0,01 | 0,01 | 0,01 |  |  |
| δ <sub>N∞</sub>     | [mm/kN]            | 0,05 | 0,04 | 0,03 | 0,03 | 0,02 | 0,02 | 0,01 | 0,01 |  |  |
| Crack               | Cracked concrete   |      |      |      |      |      |      |      |      |  |  |
| $\delta_{N0}$       | [mm/kN]            | 0,05 | 0,04 | 0,03 | 0,03 | 0,02 | 0,02 | 0,02 | 0,02 |  |  |
| $\delta_{N^\infty}$ | [mm/kN]            | 0,35 | 0,21 | 0,14 | 0,12 | 0,08 | 0,07 | 0,07 | 0,07 |  |  |
| Shear               | load               |      |      |      |      |      |      |      |      |  |  |
| δνο                 | [mm/kN]            | 0,71 | 0,45 | 0,31 | 0,17 | 0,11 | 0,07 | 0,06 | 0,05 |  |  |
| δ∨∞                 | [mm/kN]            | 1,06 | 0,67 | 0,46 | 0,25 | 0,16 | 0,11 | 0,08 | 0,07 |  |  |

Table C6: Displacement of rebar under tension and shear load

| Size            |                    | Ø8   | Ø10  | Ø12  | Ø16  | Ø20  | Ø25  | Ø32  |  |  |  |  |
|-----------------|--------------------|------|------|------|------|------|------|------|--|--|--|--|
| Tensi           | Tension load       |      |      |      |      |      |      |      |  |  |  |  |
| Uncra           | Uncracked concrete |      |      |      |      |      |      |      |  |  |  |  |
| δνο             | [mm/kN]            | 0,04 | 0,03 | 0,02 | 0,01 | 0,01 | 0,01 | 0,01 |  |  |  |  |
| δ <sub>N∞</sub> | [mm/kN]            | 0,08 | 0,05 | 0,04 | 0,02 | 0,02 | 0,01 | 0,01 |  |  |  |  |
| Crack           | Cracked concrete   |      |      |      |      |      |      |      |  |  |  |  |
| δνο             | [mm/kN]            | 0,05 | 0,04 | 0,03 | 0,03 | 0,02 | 0,02 | 0,02 |  |  |  |  |
| δ <sub>N∞</sub> | [mm/kN]            | 0,35 | 0,21 | 0,17 | 0,11 | 0,08 | 0,07 | 0,06 |  |  |  |  |
| Shear           | load               |      |      |      |      |      |      |      |  |  |  |  |
| δ∨0             | [mm/kN]            | 0,38 | 0,24 | 0,17 | 0,10 | 0,06 | 0,04 | 0,02 |  |  |  |  |
| δ∨∞             | [mm/kN]            | 0,56 | 0,36 | 0,25 | 0,14 | 0,09 | 0,06 | 0,04 |  |  |  |  |

| WCF-E3                                               |           |
|------------------------------------------------------|-----------|
| Performances Displacement for threaded rod and rebar | Annex C 5 |

Table C7: Seismic performance category C1 of threaded rod

| Size                                                                                                                                                                                                                                                                           |                                                                             |                                                                                     | M8             | M10            | M12                         | M16                                                          | M20                                         | M24            | M27            | M30            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------|----------------|-----------------------------|--------------------------------------------------------------|---------------------------------------------|----------------|----------------|----------------|
| Tension load                                                                                                                                                                                                                                                                   |                                                                             |                                                                                     |                |                |                             | •                                                            | •                                           | •              |                |                |
| Steel failure                                                                                                                                                                                                                                                                  |                                                                             |                                                                                     |                |                |                             |                                                              |                                             |                |                |                |
| Characteristic resistance grade 4.6                                                                                                                                                                                                                                            | N <sub>Rk,s,eq,C1</sub>                                                     | [kN]                                                                                | 15             | 23             | 34                          | 63                                                           | 98                                          | 141            | 184            | 224            |
| Partial safety factor                                                                                                                                                                                                                                                          | γMs                                                                         | [-]                                                                                 |                |                |                             | 2,0                                                          | 00                                          |                |                |                |
| Characteristic resistance grade 5.8                                                                                                                                                                                                                                            | N <sub>Rk,s,eq,C1</sub>                                                     | [kN]                                                                                | 18             | 29             | 42                          | 79                                                           | 123                                         | 177            | 230            | 281            |
| Partial safety factor                                                                                                                                                                                                                                                          | γMs                                                                         | [-]                                                                                 |                |                |                             | 1,5                                                          | 50                                          |                |                |                |
| Characteristic resistance grade 8.8                                                                                                                                                                                                                                            | N <sub>Rk,s,eq,C1</sub>                                                     | [kN]                                                                                | 29             | 46             | 67                          | 126                                                          | 196                                         | 282            | 367            | 449            |
| Partial safety factor                                                                                                                                                                                                                                                          | γMs                                                                         | [-]                                                                                 |                |                |                             | 1,5                                                          | 50                                          |                |                |                |
| Characteristic resistance grade 10.9                                                                                                                                                                                                                                           | N <sub>Rk,s,eq,C1</sub>                                                     | [kN]                                                                                | 37             | 58             | 84                          | 157                                                          | 245                                         | 353            | 459            | 561            |
| Partial safety factor                                                                                                                                                                                                                                                          | γMs                                                                         | [-]                                                                                 |                |                |                             | 1,3                                                          | 33                                          |                |                |                |
| Characteristic resistance A2-70, A4-70                                                                                                                                                                                                                                         | $N_{Rk,s,eq,C1}$                                                            | [kN]                                                                                | 26             | 41             | 59                          | 110                                                          | 172                                         | 247            | 321            | 393            |
| Partial safety factor                                                                                                                                                                                                                                                          | γMs                                                                         | [-]                                                                                 |                |                |                             | 1,8                                                          | 37                                          |                |                |                |
| Characteristic resistance A4-80                                                                                                                                                                                                                                                | N <sub>Rk,s,eq,C1</sub>                                                     | [kN]                                                                                | 29             | 46             | 67                          | 126                                                          | 196                                         | 282            | 367            | 449            |
| Partial safety factor                                                                                                                                                                                                                                                          | γMs                                                                         | [-]                                                                                 |                |                |                             | 1,6                                                          | 30                                          |                |                |                |
| Characteristic resistance 1.4529                                                                                                                                                                                                                                               | N <sub>Rk,s,eq,C1</sub>                                                     | [kN]                                                                                | 26             | 41             | 59                          | 110                                                          | 172                                         | 247            | 321            | 393            |
| Partial safety factor                                                                                                                                                                                                                                                          | γMs                                                                         | [-]                                                                                 |                |                |                             | 1,5                                                          | 50                                          |                |                |                |
| Characteristic resistance 1.4565                                                                                                                                                                                                                                               | N <sub>Rk,s,eq,C1</sub>                                                     | [kN]                                                                                | 26             | 41             | 59                          | 110                                                          | 172                                         | 247            | 321            | 393            |
| Partial safety factor                                                                                                                                                                                                                                                          | γMs                                                                         | [-]                                                                                 |                |                |                             | 1,8                                                          | 37                                          |                |                |                |
| Characteristic resistance to pull-out                                                                                                                                                                                                                                          |                                                                             |                                                                                     |                |                |                             |                                                              |                                             |                |                |                |
| Temperature T3: -40°C to +70°C                                                                                                                                                                                                                                                 | τRk,p,eq,C1                                                                 | [N/mm <sup>2</sup> ]                                                                | 8,0            | 8,0            | 7,5                         | 7,5                                                          | 7,0                                         | 7,0            | 5,0            | 4,5            |
| Installation safety factor                                                                                                                                                                                                                                                     | γinst                                                                       | [-]                                                                                 |                |                |                             | 1,                                                           | 0                                           |                |                |                |
| Shear load                                                                                                                                                                                                                                                                     |                                                                             |                                                                                     |                |                |                             |                                                              |                                             |                |                |                |
| Steel failure without lever arm                                                                                                                                                                                                                                                |                                                                             |                                                                                     |                |                |                             |                                                              |                                             |                |                |                |
| Characteristic resistance grade <b>4.6</b>                                                                                                                                                                                                                                     | V <sub>Rk,s,eq,C1</sub>                                                     | [kN]                                                                                | 5              | 9              | 13                          | 20                                                           | 32                                          | 28             | 37             | 45             |
| Partial safety factor                                                                                                                                                                                                                                                          | γκκ,s,eq,c i                                                                | [-]                                                                                 |                | Ü              |                             | 1,6                                                          |                                             | 20             | 0,             | 10             |
| Characteristic resistance grade <b>5.8</b>                                                                                                                                                                                                                                     | V <sub>Rk,s,eq,C1</sub>                                                     | [kN]                                                                                | 7              | 11             | 16                          | 26                                                           | 40                                          | 35             | 46             | 56             |
| Partial safety factor                                                                                                                                                                                                                                                          | γικ,s,eq,στ<br>γMs                                                          | [-]                                                                                 | •              |                |                             | 1,2                                                          |                                             | 00             | 10             | 00             |
| Characteristic resistance grade 8.8                                                                                                                                                                                                                                            | V <sub>Rk,s,eq,C1</sub>                                                     | [kN]                                                                                | 11             | 17             | 25                          | 41                                                           | 64                                          | 56             | 73             | 90             |
| Partial safety factor                                                                                                                                                                                                                                                          | γMs                                                                         | [-]                                                                                 |                |                |                             | 1,2                                                          |                                             | - 00           |                | - 00           |
| Characteristic resistance grade 10.9                                                                                                                                                                                                                                           | V <sub>Rk,s,eq,C1</sub>                                                     | [kN]                                                                                | 14             | 22             | 32                          | 51                                                           | 80                                          | 71             | 92             | 112            |
| Partial safety factor                                                                                                                                                                                                                                                          |                                                                             |                                                                                     |                |                |                             |                                                              |                                             |                |                |                |
| II artial carety lactor                                                                                                                                                                                                                                                        | γMs                                                                         | [-]                                                                                 |                |                |                             | 1,5                                                          | 50                                          |                |                |                |
|                                                                                                                                                                                                                                                                                | γMs<br>V <sub>Rk.s.ea.C1</sub>                                              |                                                                                     | 10             | 15             | 22                          | 1,5<br>36                                                    | 50<br>56                                    | 49             | 64             | 79             |
| Characteristic resistance A2-70, A4-70                                                                                                                                                                                                                                         | V <sub>Rk,s,eq,C1</sub>                                                     | [-]<br>[kN]<br>[-]                                                                  | 10             | 15             | 22                          |                                                              | 56                                          | 49             | 64             | 79             |
| Characteristic resistance <b>A2-70</b> , <b>A4-70</b> Partial safety factor                                                                                                                                                                                                    | V <sub>Rk,s,eq,C1</sub>                                                     | [kN]<br>[-]                                                                         |                |                |                             | 36<br>1,                                                     | 56<br>56                                    |                |                |                |
| Characteristic resistance A2-70, A4-70 Partial safety factor Characteristic resistance A4-80                                                                                                                                                                                   | VRk,s,eq,C1<br>γMs<br>VRk,s,eq,C1                                           | [kN]<br>[-]<br>[kN]                                                                 | 10             | 15<br>17       | 22                          | 36<br>1,5<br>41                                              | 56<br>56<br>64                              | 49<br>56       | 73             | 79<br>90       |
| Characteristic resistance <b>A2-70</b> , <b>A4-70</b> Partial safety factor                                                                                                                                                                                                    | VRk,s,eq,C1<br>γMs<br>VRk,s,eq,C1<br>γMs                                    | [kN]<br>[-]                                                                         |                |                |                             | 36<br>1,5<br>41<br>1,5                                       | 56<br>56<br>64                              |                |                |                |
| Characteristic resistance A2-70, A4-70 Partial safety factor Characteristic resistance A4-80 Partial safety factor                                                                                                                                                             | VRk,s,eq,C1<br>γMs<br>VRk,s,eq,C1                                           | [kN]<br>[-]<br>[kN]<br>[-]                                                          | 11             | 17             | 25                          | 36<br>1,5<br>41                                              | 56<br>56<br>64<br>33<br>56                  | 56             | 73             | 90             |
| Characteristic resistance A2-70, A4-70 Partial safety factor Characteristic resistance A4-80 Partial safety factor Characteristic resistance 1.4529                                                                                                                            | VRk,s,eq,C1<br>γMs<br>VRk,s,eq,C1<br>γMs<br>VRk,s,eq,C1<br>γMs              | [kN]<br>[-]<br>[kN]<br>[-]<br>[kN]                                                  | 11             | 17             | 25                          | 36<br>1,8<br>41<br>1,3                                       | 56<br>56<br>64<br>33<br>56                  | 56             | 73             | 90             |
| Characteristic resistance A2-70, A4-70 Partial safety factor Characteristic resistance A4-80 Partial safety factor Characteristic resistance 1.4529 Partial safety factor                                                                                                      | VRk,s,eq,C1<br>γMs<br>VRk,s,eq,C1<br>γMs<br>VRk,s,eq,C1                     | [kN]<br>[-]<br>[kN]<br>[-]<br>[kN]                                                  | 11             | 17             | 25<br>22                    | 36<br>1,5<br>41<br>1,5<br>36                                 | 56<br>56<br>64<br>33<br>56<br>25            | 56             | 73<br>64       | 90             |
| Characteristic resistance A2-70, A4-70 Partial safety factor Characteristic resistance A4-80 Partial safety factor Characteristic resistance 1.4529 Partial safety factor Characteristic resistance 1.4565                                                                     | VRk,s,eq,C1  γMs  VRk,s,eq,C1  γMs  VRk,s,eq,C1  γMs  VRk,s,eq,C1  γMs      | [kN] [-] [kN] [-] [kN] [-] [kN] [-]                                                 | 11 10 10       | 17<br>15       | 25<br>22<br>22              | 36<br>1,5<br>41<br>1,5<br>36<br>1,2<br>36                    | 56<br>56<br>64<br>33<br>56<br>25<br>56      | 56<br>49<br>49 | 73<br>64<br>64 | 90 79 79       |
| Characteristic resistance A2-70, A4-70 Partial safety factor Characteristic resistance A4-80 Partial safety factor Characteristic resistance 1.4529 Partial safety factor Characteristic resistance 1.4565 Partial safety factor Characteristic shear load resistance VRk,s,et | VRk,s,eq,C1  γMs  VRk,s,eq,C1  γMs  VRk,s,eq,C1  γMs  VRk,s,eq,C1  γMs      | [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [c] [c] [c] [c] [c] [c] [c] [c] [c] [c | 11<br>10<br>10 | 17<br>15<br>15 | 25<br>22<br>22<br>29 follow | 36<br>1,5<br>41<br>1,7<br>36<br>1,2<br>36<br>1,5<br>wing res | 56<br>64<br>33<br>56<br>25<br>56<br>duction | 56<br>49<br>49 | 73<br>64<br>64 | 90<br>79<br>79 |
| Characteristic resistance A2-70, A4-70 Partial safety factor Characteristic resistance A4-80 Partial safety factor Characteristic resistance 1.4529 Partial safety factor Characteristic resistance 1.4565 Partial safety factor Characteristic shear load resistance VRk,s,et | VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 | [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [c] [c] [c] [c] [c] [c] [c] [c] [c] [c | 11<br>10<br>10 | 17<br>15<br>15 | 25<br>22<br>22              | 36<br>1,5<br>41<br>1,5<br>36<br>1,2<br>36                    | 56<br>56<br>64<br>33<br>56<br>25<br>56      | 56<br>49<br>49 | 73<br>64<br>64 | 90 79 79       |

The anchor shall be used with minimum rupture elongation after fracture  $A_5$  equal to 19%.

| WCF-E3                                                       |           |
|--------------------------------------------------------------|-----------|
| Performances Seismic performance category C1 of threaded rod | Annex C 6 |

# Appendix 18/19

## Table C8: Seismic performance category C1 of rebar

| Size                                  |                         |                      | Ø10 | Ø12 | Ø16 | Ø20 | Ø25 | Ø32 |
|---------------------------------------|-------------------------|----------------------|-----|-----|-----|-----|-----|-----|
| Tension load                          |                         |                      |     |     |     |     |     |     |
| Steel failure                         |                         |                      |     |     |     |     |     |     |
| Rebar BSt 500 S                       | $N_{Rk,s,eq,C1}$        | [kN]                 | 43  | 62  | 111 | 173 | 270 | 442 |
| Partial safety factor                 | γMs                     | [-]                  | 1,4 |     |     |     |     |     |
| Characteristic resistance to pull-out |                         |                      |     |     |     |     |     |     |
| Temperature T3: -40°C to +70°C        | τ <sub>Rk,p,eq,C1</sub> | [N/mm <sup>2</sup> ] | 8,9 | 9,0 | 9,0 | 8,0 | 7,5 | 4,8 |
| Dry and wet concrete                  |                         |                      |     |     |     |     |     |     |
| Installation safety factor            | γinst                   | [-]                  | 1,0 |     |     |     |     |     |
| Flooded hole                          |                         |                      | -   |     |     |     |     |     |
| Installation safety factor            | γinst                   | [-]                  |     |     | 1   | ,2  |     |     |

| Shear load                      |                  |      |     |    |    |    |    |     |
|---------------------------------|------------------|------|-----|----|----|----|----|-----|
| Steel failure without lever arm |                  |      |     |    |    |    |    |     |
| Rebar BSt 500 S                 | $V_{Rk,s,eq,C1}$ | [kN] | 16  | 23 | 41 | 69 | 67 | 111 |
| Partial safety factor           | γMs              | [-]  | 1,5 |    |    |    |    |     |
| Factor for annular gap          | αgap             | [-]  |     |    | 0  | ,5 |    |     |

| WCF-E3                                                |           |
|-------------------------------------------------------|-----------|
| Performances Seismic performance category C1 of rebar | Annex C 7 |

Table C9: Seismic performance category C2 of threaded rod

|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| N <sub>Rk,s,eq,C2</sub> | [kN]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| γMs                     | [-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| N <sub>Rk,s,eq,C2</sub> | [kN]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| γMs                     | [-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| N <sub>Rk,s,eq,C2</sub> | [kN]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| γMs                     | [-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $N_{Rk,s,eq,C2}$        | [kN]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| γMs                     | [-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| N <sub>Rk,s,eq,C2</sub> | [kN]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| γMs                     | [-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $N_{Rk,s,eq,C2}$        | [kN]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| γMs                     | [-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $N_{Rk,s,eq,C2}$        | [kN]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| γMs                     | [-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $N_{Rk,s,eq,C2}$        | [kN]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| γMs                     | [-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| τRk,p,eq,C2             | [N/mm <sup>2</sup> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| γ2=γinst                | [-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| V <sub>Rk.s.ea.C2</sub> | [kN]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| γMs                     | [-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| V <sub>Rk.s.eq.C2</sub> | [kN]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                         | [-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| •                       | [kN]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| γMs                     | [-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| V <sub>Rk.s.eq.C2</sub> | [kN]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| γMs                     | [-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| V <sub>Rk,s,eq,C2</sub> | [kN]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| γMs                     | [-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| V <sub>Rk,s,eq,C2</sub> | [kN]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| γMs                     | [-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| V <sub>Rk,s,eq,C2</sub> | [kN]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| γMs                     | [-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| V <sub>Rk,s,eq,C2</sub> | [kN]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| γMs                     | [-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | reduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0x,h-dg,c2              | [-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0,46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0,61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                         | NRk,s,eq,C2 YMs VRk,s,eq,C2 | γMs         [-]           NRk,s,eq,C2         [kN]           γMs         [-]           TRk,p,eq,C2         [kN]           γMs         [-]           VRk,s,eq,C2         [kN]           γMs         [-] | γMs         [-]           NRk,s,eq,C2         [kN]         42           γMs         [-]         NRk,s,eq,C2         [kN]         67           γMs         [-]         NRk,s,eq,C2         [kN]         59           γMs         [-]         VRk,s,eq,C2         [kN]         3,2           γ2=γinst         [-]         VRk,s,eq,C2         [kN]         16           γMs         [-]         VRk,s,eq,C2         [kN]         25           γMs         [-]         VRk,s,eq,C2         [kN]         32           γMs         [-]         VRk,s,eq,C2         [kN]         25           γMs         [-]         VRk,s,eq,C2         [kN]         25           γMs         [-]         VRk,s,eq,C2         [kN]         25           γMs         [-]         VRk,s,eq,C2         [kN]         22           γMs | γMs         [-]         2,00           NRk,s,eq,C2         [kN]         42         79           γMs         [-]         1,50           NRk,s,eq,C2         [kN]         67         126           γMs         [-]         1,50           NRk,s,eq,C2         [kN]         84         157           γMs         [-]         1,33           NRk,s,eq,C2         [kN]         59         110           γMs         [-]         1,87           NRk,s,eq,C2         [kN]         59         110           γMs         [-]         1,50           NRk,s,eq,C2         [kN]         59         110           γMs         [-]         1,50           NRk,s,eq,C2         [kN]         59         110           γMs         [-]         1,87           TRk,p,eq,C2         [kN]         59         110           γMs,s,eq,C2         [kN]         13         18           γMs,eq,C2         [kN]         13         18           γMs         [-]         1,25           VRk,s,eq,C2         [kN]         1,25           VRk,s,eq,C2         [kN]         25         36 |

Table C10: Displacement under tensile and shear load - seismic category C2 of threaded rod

0,5

| Size                 |      | M12   | M16  | M20   |
|----------------------|------|-------|------|-------|
| $\delta_{N,eq(DLS)}$ | [mm] | 0,20  | 0,40 | 0,77  |
| $\delta$ N,eq(ULS)   | [mm] | 0,76  | 0,74 | 1,68  |
| $\delta_{V,eq(DLS)}$ | [mm] | 5,29  | 4,12 | 4,94  |
| $\delta_{V,eq(ULS)}$ | [mm] | 10,20 | 9,05 | 10,99 |

Factor for annular gap

The anchor shall be used with minimum rupture elongation after fracture A5 equal to 19%.

| WCF-E3                                                       |           |
|--------------------------------------------------------------|-----------|
| Performances Seismic performance category C2 of threaded rod | Annex C 8 |