

Prosecká 811/76a 190 00 Prague Czech Republic eota@tzus.cz

European Technical Assessment

ETA 15/0702 of 03/07/2023

Technical Assessment Body issuing the E for Construction Prague	TA: Technical and Test Institute
Trade name of the construction product	WCF-EASF WCF-EASF-C WCF-EASF-E
Product family to which the construction product belongs	Product area code: 33 Bonded injection type anchor for use in cracked and uncracked concrete
Manufacturer	KLIMAS sp. z o.o. ul.Wincentego Witosa 135/137 Kuźnica Kiedrzyńska 42-233 Mykanów, Poland
Manufacturing plant	KLIMAS sp. z o.o. Manufacturing plant no. 3
This European Technical Assessment contains	24 pages including 21 Annexes which form an integral part of this assessment.
This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of	EAD 330499-01-0601 Bonded fasteners for use in concrete
This version replaces	ETA 15/0702 issued on 02/12/2020

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body - Technical and Test Institute for Construction Prague. Any partial reproduction has to be identified as such.

1. Technical description of the product

The WCF-EASF, WCF-EASF-C (faster curing time) and WCF-EASF-E (extended processing time) with steel elements is bonded anchor (injection type).

Steel elements can be galvanized or stainless steel threaded rod or rebar.

Steel element is placed into a drilled hole filled with injection mortar. The steel element is anchored via the bond between metal part, injection mortar and concrete. The anchor is intended to be used with embedment depth from 8 diameters to 20 diameters.

The illustration and the description of the product are given in Annex A.

2. Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years and 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C 1 to C 9
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 10, C 11
Displacements under short-term and long-term loading	See Annex C 12
Characteristic resistance for seismic performance categories C1	See Annex C 13

3.2 Hygiene, health and environment (BWR 3)

No performance determined.

3.3 General aspects relating to fitness for use

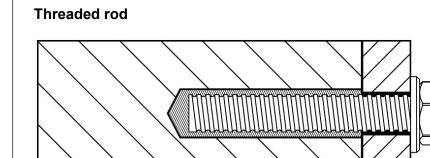
Durability and serviceability are only ensured if the specifications of intended use according to Annex B 1 are kept.

4. Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base

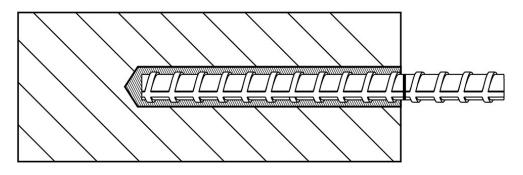
According to the Decision 96/582/EC of the European Commission¹ the system of assessment verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table apply.

Product	Intended use	Level or class	System
Metal anchors for	For fixing and/or supporting to concrete,		
use in concrete	structural elements (which contributes to	-	1
	the stability of the works) or heavy units		

¹ Official Journal of the European Communities L 254 of 08.10.1996


5. Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD

The factory production control shall be in accordance with the control plan which is a part of the technical documentation of this European Technical Assessment. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited at Technical and Test Institute for Construction Prague.² The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

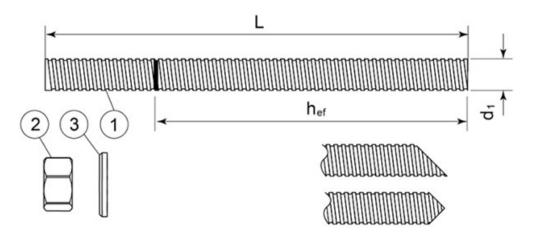

Issued in Prague on 03.07.2023

By Ing. Jiří Studnička, Ph.D. Head of the Technical Assessment Body

² The control plan is a confidential part of the documentation of the European Technical Assessment, but not published together with the ETA and only handed over to the approved body involved in the procedure of AVCP.

Reinforcing bar

WCF-EASF, WCF-EASF-C, WCF-EASF-E


Product description Installed conditions Annex A 1

Page 4 of 24 ETA 15/0702 issued on 03/07/2023 and replacing ETA 15/0702 issued on 07/07/202

Coaxial cartrid WCF-EASF, WCI	ge F-EASF-C, WCF-EASF-E	150 ml 380 ml 400 ml 410 ml	
Side by side ca WCF-EASF, WCF	artridge F-EASF-C, WCF-EASF-E	350 ml 825 ml	
	a single piston compo F-EASF-C, WCF-EASF-E	nent cartric 170 ml 300 ml 850 ml	lge
Peeler cartridg WCF-EASF, WCI	e F-EASF-C, WCF-EASF-E	280 ml	
		ame, Charg	e code number, Storage life,
Mixing nozzle NN			
WN			
EZ-Flow			
SN			

Product descr Injection syster			Annex A 2
WCF-EASF, W	CF-EASF-C, WCF-EASF-E		
KN for 850 ml			
LN			0

Threaded rod M8, M10, M12, M16, M20, M24, M27, M30

Standard commercial threaded rod with marked embedment depth

Part	Designation	Material				
Steel, zinc plated \geq 5 µm acc. to EN ISO 4042 or Steel, Hot-dip galvanized \geq 40 µm acc. to EN ISO 1461 and EN ISO 10684 or Steel, zinc diffusion coating \geq 15 µm acc. to EN 13811 or Steel, zinc flake \geq 8 µm acc. to EN ISO 2178:2016						
1	Anchor rod	Steel, EN 10087 or EN 10263 KPG 4.6, KPG 5.8, KPG 8.8, KPG 10.9* EN ISO 898-1				
2	Hexagon nut EN ISO 4032	According to threaded rod, EN 20898-2				
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod				
Stain	ess steel					
1	Anchor rod	KPG A2-70, KPG A4-70, KPG A4-80 EN ISO 3506				
2	Hexagon nut EN ISO 4032	According to threaded rod				
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod				
High	corrosion resistant steel					
1	Anchor rod	KPG HCR, KPG UHCR EN 10088-1				
2	Hexagon nut EN ISO 4032	According to threaded rod				
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod				
*Galva	anized rod of high strength are sensitive	to hydrogen induced brittle failure				
/CF-EA	SF, WCF-EASF-C, WCF-EASF-E					

Product description

Threaded rod and materials

Annex A 3

Rebar Ø8, Ø10, Ø12, Ø16, Ø20, Ø25, Ø32

Standard commercial reinforcing bar with marked embedment depth

Product form		Bars and de	-coiled rods	
Class	ass			
Characteristic yield strength fyk or fo	_{0,2k} (MPa)	400 to 600		
Minimum value of $k = (f_t/f_y)_k$				
Characteristic strain at maximum for	prce ε _{uk} (%)	≥ 5,0	≥ 7,5	
Bendability		Bend/Rebend test		
Maximum deviation from nominal	Nominal bar size (mm)			
mass (individual bar) (%)	≤ 8	±6	6,0	
	> 8	±4,5		
Bond: Minimum relative rib area,	Nominal bar size (mm)			
f _{R,min}	8 to 12	0,040		
	> 12	0,0	56	

WCF-EASF, WCF-EASF-C, WCF-EASF-E

Product description Rebars and materials Annex A 4

Specifications of intended use

Anchorages subject to:

- Static and quasi-static load.
- Seismic actions category C1 (max w = 0,5 mm): threaded rod size M10, M12, M16, M20, M24

Base materials

- Uncracked concrete.
- Cracked and uncracked concrete for threaded rod size M10, M12, M16, M20, M24
- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum and C50/60 at maximum according EN 206-1:2000-12.

Temperature range:

• -40°C to +80°C (max. short. term temperature +80°C and max. long term temperature +50°C)

Use conditions (Environmental conditions)

- (X1) Structures subject to dry internal conditions (zinc coated steel, stainless steel, high corrosion resistance steel).
- (X2) Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel A4, high corrosion resistant steel).
- (X3) Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Concrete conditions:

- 11 installation in dry or wet (water saturated) concrete and use in service in dry or wet concrete.
- I2 installation in water-filled (not sea water) and use in service in dry or wet concrete

Design:

- The anchorages are designed in accordance with the EN 1992-4 under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings.
- Anchorages under seismic actions (cracked concrete) have to be designed in accordance with EN 1992-4.

Installation:

- Hole drilling by hammer drilling, dustless drilling or diamond core drilling mode.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

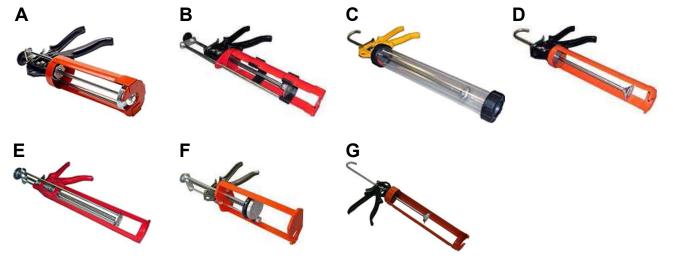
Installation direction:

• D3 – downward and horizontal and upwards (e.g. overhead) installation

WCF-EASF, WCF-EASF-C, WCF-EASF-E

Intended use Specifications Annex B 1

HDB – Hollow Drill Bit System


Heller Duster Expert hollow drill bit SDS-Plus ≤ 16mm SDS-Max ≥ 16mm

Class M vacuum Minimum flow rate 266 m3/h (74 l/s)

Cleaning brush

Applicator gun

Applicator gun	А	В	С	D	E	F	G
Cartridge	Coaxial 380ml 400ml	Side by side 350ml	Foil capsule 170ml 300ml	Foil capsule 170ml 300ml	Coaxial 150ml	Side by side 825ml	Foil capsule 850ml
g-	410ml			Peeler 280ml			

WCF-EASF, WCF-EASF-C, WCF-EASF-E

Intended use Hollow drill bit system, Cleaning brush Applicator guns

Annex B 2

SOLID SUBSTRATE INSTALLATION METHOD

1. Using the SDS hammer drill (HD) in rotary hammer mode for drilling, with a carbide tipped drill bit of the appropriate size, drill the hole to the specified hole diameter and depth.

KI

2. Select the correct air lance, insert to the bottom of the hole, and depress the trigger for 2 seconds. The compressed air must be clean and free from water and oil, with a minimum pressure of 90 psi (6 bar). A manual pump may be used for certain diameters and depths; check the approval document. Perform the blowing operation twice.

3. Select the correct size hole cleaning brush. Ensure that the brush is in good condition and of the correct diameter. Insert the brush to the bottom of the hole, using a brush extension if needed to reach the bottom. Withdraw with a twisting motion. There should be a positive interaction between the bristles of the brush and the sides of the drilled hole. Perform the brushing operation twice.

4. Repeat step 2 (blowing operation x2)

5. Repeat step 3 (brushing operation x2)

6. Repeat step 2 (blowing operation x2)

7. Select the most appropriate static mixer nozzle, checking that the mixing elements are present and t for purpose. Never modify the mixer. Attach the mixer nozzle to the cartridge. Check the dispensing tool is in good working order. Place the cartridge into the dispensing tool.

8. Extrude some resin to waste until an even coloured mixture is achieved. The cartridge is now ready for use.

9. Insert the mixing nozzle to the bottom of the hole. Extrude the resin and slowly withdraw the nozzle from the hole. Ensure no air voids are created as the nozzle is withdrawn. Inject resin until the hole is approximately ¾ full and remove the nozzle from the hole.

10. Select the steel anchor element ensuring it is free from oil or other contaminants, and mark with the required embedment depth. Insert the steel element into the hole using a back and forth twisting motion to ensure complete cover, until it reaches the bottom of the hole. Excess resin will be expelled from the hole evenly around the steel element and there shall be no gaps between the anchor element and the wall of the drilled hole.

11. Clean any excess resin from around the mouth of the hole.

12. Refer to the working and loading times within the tables to determine the appropriate cure time.

13. Position the fixture and tighten the anchor to the appropriate installation torque. Do not over-torque the anchor, as this could adversely affect its performance.

B

WCF-EASF, WCF-EASF-C, WCF-EASF-E

Intended use Installation procedure

DEEP EMBEDMENT & OVERHEAD INSTALLATION METHOD

1a. Perform steps 1-8 under "solid substrate installation method".

2a. Attach the correct diameter and length extension tube to the nozzle. Select the correct diameter resin stopper for the application, then push and screw the extension tube into the resin stopper. This is held in place with a coarse internal thread. The resin stopper is a reusable accessory.

3a. Push the resin stopper and extension tube to the back of the drill hole.

4a. Ensure the extension tube is angled to allow free movement of the resin stopper as the resin is extruded.

5a. Continue from step 10 under "solid substrate installation method".

DIAMOND CORE DRILLING

1b. Using a diamond core drill (DD) and following the manufacturer's instructions, drill the specified diameter hole to the correct embedment depth then remove the concrete core.

2b. Starting from the back of the hole, flush with pressurised water a minimum of two times and until there is only clean water.

3b. Select the correct size hole cleaning brush. Ensure that the brush is in good condition and of the correct diameter. Insert the brush to the bottom of the hole, using a brush extension if needed to reach the bottom. Withdraw with a twisting motion. There should be a positive interaction between the bristles of the brush and the sides of the drilled hole. Perform the brushing operation twice.

- 4b. Repeat step 2b (ushing operation x2).
- 5b. Repeat step 3b (brushing operation x2).

6a. Using the correct air lance and starting from the back of the hole and withdrawing, perform a minimum of two blowing operations and ensure that the hole is clear of debris and excess water.

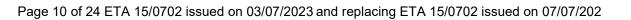
7a. Continue from step 7 under "solid substrate installation method".

DUSTLESS DRILLING

1c. Using the specified hollow drill bit (HDB) and vacuum system and following the manufacturer's instructions, drill the specified diameter hole to the correct embedment depth. Ensure that the minimum vacuum specifications are met and that the vacuum is turned on.

2c. The hole should be inspected to ensure the system has worked correctly. If the hole is clear of dust and debris, no further cleaning is required.

3c. Continue from step 7 under "solid substrate installation method".



Size			M8	M10	M12	M16	M20	M24	M27	M30
Nominal drill hole diameter	Ød₀	[mm]	10	12	14	18	22	26	30	35
Diameter of cleaning brush	db	[mm]	14	14	20	20	29	29	40	40
Manual pump cleaning			h _{ef} < 300 mm							
Torque moment	max T _{fix}	[Nm]	10	20	40	80	150	200	240	275
Depth of drill hole for hef,min	$h_0 = h_{ef}$	[mm]	64	80	96	128	160	192	216	240
Depth of drill hole for hef,max	$h_0 = h_{ef}$	[mm]	160	200	240	320	400	480	540	600
Minimum edge distance	Cmin	[mm]	35	40	50	65	80	96	110	120
Minimum spacing	Smin	[mm]	35	40	50	65	80	96	110	120
Minimum thickness of member	h _{min}	[mm]	h _{ef} +	30 mm	n ≥ 100) mm		h _{ef} +	· 2d₀	

Table B2: Installation parameters of rebar

Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Nominal drill hole diameter	$\operatorname{Ød}_0$	[mm]	12	14	16	20	25	32	40
Diameter of cleaning brush	db	[mm]	14	14	19	22	29	40	42
Manual pump cleaning				h _{ef}	< 300 r	nm			
Depth of drill hole for hef,min	$h_0 = h_{ef}$	[mm]	64	80	96	128	160	200	256
Depth of drill hole for hef,max	$h_0 = h_{ef}$	[mm]	160	200	240	320	400	500	640
Minimum edge distance	C _{min}	[mm]	35	40	50	65	80	100	130
Minimum spacing	Smin	[mm]	35	40	50	65	80	100	130
Minimum thickness of member	\mathbf{h}_{\min}	[mm]	h _{ef} +	- 30 mn	n ≥ 100	mm		h _{ef} + 2d)

Table B3: Minimum curing time

WCF-EASF			
Resin cartridge temperature [°C]	T Work [mins]	Base material Temperature [°C]	T Load [mins]
+10	30 mins	-10 to -5	24 hours
+5	20 mins	-5 to 0	300 mins
0 to +5	15 mins	0 to +5	210 mins
+5 to +10	10 mins	+5 to +10	145 mins
+10 to +15	8 mins	+10 to +15	85 mins
+15 to +20	6 mins	+15 to +20	75 mins
+20 to +25	5 mins	+20 to +25	50 mins
+25 to +30	4 mins	+25 to +30	40 mins

T Work [mins]	Base material Temperature [°C]	T Load [mins]
40 mins	-20 to -15 ¹⁾	24 hours
30 mins	-15 to -10 ¹⁾	18 hours
20 mins	-10 to -5	12 hours
15 mins	-5 to 0	100 mins
10 mins	0 to +5	75 mins
5 mins	+5 to +20	50 mins
100 second	+20	20 mins
	40 mins 30 mins 20 mins 15 mins 10 mins 5 mins 100 second	40 mins -20 to -15 ¹) 30 mins -15 to -10 ¹) 20 mins -10 to -5 15 mins -5 to 0 10 mins 0 to +5 5 mins +5 to +20

¹⁾ characteristic values of resistance see Annex C 3, C 5, C 7 and C 9

WCF-EASF-E			
Resin cartridge temperature [°C]	T Work [mins]	Base material Temperature [°C]	T Load [mins]
+15 to +20	15 mins	+15 to +20	5 hours
+20 to +25	10 mins	+20 to +25	145 mins
+25 to +30	7.5 mins	+25 to +30	85 mins
+30 to +35	5 mins	+30 to +35	50 mins
+35 to +40	3.5 mins	+35 to +40	40 mins

T work is typical gel time at highest temperature T load is set at the lowest temperature

WCF-EASF, WCF-EASF-C, WCF-EASF-E

Intended use

Installation parameters Curing time

Annex B 4

Page 11 of 24 ETA 15/0702 issued on 03/07/2023 and replacing ETA 15/0702 issued on 07/07/202

Table C1: Design method EN 1992-4 Characteristic values of resistance to tension load of threaded rod

Steel failure – Characteristic re	sistance									
Size			M8	M10	M12	M16	M20	M24	M27	M30
KPG 4.6	N _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Partial safety factor	γMs	[-]				2,	00			
KPG 5.8	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
Partial safety factor	γMs	[-]				1,	50			
KPG 8.8	N _{Rk,s}	[kN]	29	46	67	126	196	282	367	449
Partial safety factor	γMs	[-]				1,	50			
KPG 10.9	N _{Rk,s}	[kN]	37	58	84	157	245	353	459	561
Partial safety factor	γMs	[-]				1,	33			
KPG A2-70, KPG A4-70	N _{Rk,s}	[kN]	26	41	59	110	172	247	321	393
Partial safety factor	γMs	[-]				1,	87			
KPG A4-80	N _{Rk,s}	[kN]	29	46	67	126	196	282	367	449
Partial safety factor	γMs	[-]				1,	60			
KPG HCR	N _{Rk,s}	[kN]	26	41	59	110	172	247	321	393
Partial safety factor	γMs	[-]				1,	50			
KPG UHCR	N _{Rk,s}	[kN]	26	41	59	110	172	247	321	393
Partial safety factor	γMs	[-]				1,	87			

Table C2: Design method EN 1992-4

Steel failure - Characteristic values of resistance to tension load of rebar

Steel failure – Characteristic resistance									
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Rebar BSt 500 S	$N_{Rk,s}$	[kN]	28	43	62	111	173	270	442
Partial safety factor	γMs	[-]				1,4			

WCF-EASF, WCF-EASF-C, WCF-EASF-E

Performances

Steel failure characteristic resistance

 Table C3: Design method EN 1992-4

 Characteristic values of resistance to tension load of threaded rod

Combined pullout and concrete cone failure in concrete C20/25

Hammer drilling									
Size			M8	M10) M12	M16	M20	M24	M27 M3
Characteristic bond resistance in uncracked	l conc	roto for a							
Dry and wet concrete			10,0		_	9,0	8,5	8,0	6,5 5,5
Installation safety factor	τRk,ucr		10,0	9,5		,2	0,5	0,0	
Flooded hole	γinst	[-] [N/mm²]	8,5	7,5		, <u>z</u> 7,0	6.5	5.5	1,4
Installation safety factor	τRk,ucr		0,5	7,5	7,0		,	5,5	
	γinst	[-]		•	1440		,4	1400	-
Size			M1	-	M12		16	M20	M24
Characteristic bond resistance in cracked co	oncre		orking	g life		ears			
Dry and wet concrete	$\tau_{Rk,cr}$	[N/mm ²]	4,	5	4,5		,5	4,0	4,0
Installation safety factor	γinst						,2		
Flooded hole	$ au_{Rk,cr}$	[N/mm ²]	4,	5	4,5		,5	4,0	4,0
Installation safety factor	γinst	[-]				1	,4		
Characteristic bond resistance in cracked co	oncret	te for a w	orking	g life	of 100	years			
Dry and wet concrete	$\tau_{Rk,cr}$	[N/mm ²]	3,	0	3,0	3	,0	2,5	2,5
Installation safety factor	γinst	[-]				1	,2		
Flooded hole	τ _{Rk,cr}	[N/mm ²]	3,	0	3,0	3	,0	2,5	2,5
Installation safety factor	γinst	[-]				1	,4		
Dustless drilling			_			-	1	- F	·
Size			M8	M10) M12	M16	M20	M24	M27 M3
Characteristic bond resistance in uncracked	l conc	rete for a	work	ing li	fe of 50) year	s and	100 ye	ears
Dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	10,0	9,5	9,5	9,0	8,5	8.0	6,5 5,
Installation safety factor	γinst		- / -	- / -	- 1 -		.2	7 -	
Flooded hole	τRk,ucr	EN 17 23	8,5	7,5	7,0	7,0	6,5	5,5	4,5 4,0
Installation safety factor	Yinst	[-]	- , -		.,.		,4	1 0,0	.,
Size	1		M1	0	M12		16	M20	M24
							10	11120	
Characteristic bond resistance in cracked co							F	1.0	4.0
Dry and wet concrete	$\tau_{Rk,cr}$		4,	5	4,5		,5	4,0	4,0
Installation safety factor	γinst				4 5		,2	4.0	10
Flooded hole	τ _{Rk,cr}		4,	5	4,5		,5	4,0	4,0
Installation safety factor	γinst		L				,4		
Characteristic bond resistance in cracked co	oncre						- 1		
Dry and wet concrete	$\tau_{Rk,cr}$		3,)	3,0		,0	2,5	2,5
Installation safety factor	γinst					-	,2		-
Flooded hole	$\tau_{Rk,cr}$		3,)	3,0		,0	2,5	2,5
Installation safety factor	γinst	[-]				1	,4		
Factor for uncracked concrete C50/60		[-]					1		
		[-]							
C30/37		r 1					12		
Factor for cracked concrete C40/50		[-]					23		
C50/60							30		
Factor for influence of sustained T1: 24°C / 40°C		[-]					75		
load for a working life 50 years T2: 50°C / 80°C						0,	73		
Concrete cone failure									
Factor for concrete cone failure for uncracked concrete	k v					1	1		
Factor for concrete cone failure for cracked concrete	Kucr,N Kcr,N	[-]				7.			
Edge distance		[mm]				1,5			
	Ccr,N	[mm]				1,0	liet		
Splitting failure									
Size			M8	M10	M12	M16	M20	M24	M27 M30
Edge distance	0	[mm]	1410		17112				
	Ccr,sp	[mm] [mm]					bh _{ef} Dh _{ef}		
Spacing	Scr,sp	[mm]				J,U	let		
/CF-EASF, WCF-EASF-C, WCF-EASF-E									
						-			
erformances							Δ	nnex	C 2
lammer drilling, Dustless drilling							~		~ =
haracteristic resistance for tension loads -	threa	ded rod							
						1			

Table C4: Design method EN 1992-4

Characteristic values of resistance to tension load of threaded rod for WCF-EASF-C with installation temperature < -10°C

Hammer drilling											
Size				M8	M10	M12	M16	M20	M24	M27	M3
Characteristic bond resistance in u	ncracked	conc	rete for a								
Dry and wet concrete		τ _{Rk,ucr}	[N/mm ²]	9,5	9,0	9.0	8,5	8,0	7,5	6,0	5,0
Installation safety factor		γinst	[-]	-,-	-,-	,	,2	-,-	1 .,.	<u> </u>	,4
Flooded hole		τ _{Rk,ucr}	[N/mm ²]	8,0	7,0	6,5	6,5	6,0	5,0		
Installation safety factor		γinst	[-]	- , -	,-	- / -	1		- , -		
Size				M1	0	M12	M	16	M20	Ν	/124
Characteristic bond resistance in c	racked co	ncret	e for a w								
Dry and wet concrete			[N/mm ²]	4,0		4,0	4	0	3,5		3,5
Installation safety factor		τRk,cr	[-]	-,0		4,0		,2	0,0		0,0
Flooded hole		γinst TDk er	[N/mm ²]	4,0		4,0	4		3,5		3,5
Installation safety factor		τRk,cr	[1]	4,0	/	4,0		<u>,0 </u>	5,5		5,5
	reaked as	γinst		l arkin a	life e	£ 400 ·		,4			
Characteristic bond resistance in c	IACKEU CO							<u> </u>	~ ^ ^		2.0
Dry and wet concrete		τ _{Rk,cr}	[N/mm ²]	2,5		2,5	2		2,0		2,0
Installation safety factor		γinst	[-]	<u> </u>	· 1	25		,2	0.0	1	<u> </u>
Flooded hole		τ _{Rk,cr}	[N/mm ²]	2,5		2,5	2		2,0		2,0
Installation safety factor		γinst	[-]				1	,4			
Dustless drilling											
Size				M8	M10	M12	M16	M20	M24	M27	M3
Characteristic bond resistance in u	nerackad	conc	roto for a								
							8,5				5
Dry and wet concrete		τRk,ucr	[N/mm ²]	9,5	9,0	9,0		8,0	7,5	6,0	5,
Installation safety factor		γinst	[-]	0.0	7.0	6.5		,2	50	10	2
Flooded hole		τ _{Rk,ucr}	[N/mm ²]	8,0	7,0	6,5	6,5	6,0	5,0	4,0	3,
Installation safety factor		γinst	[-]			140	-	,4	1400		10.4
Size	· · ·			M1	-	M12	M [·]	16	M20	N	/124
Characteristic bond resistance in c	racked co	ncret									
Dry and wet concrete		τ _{Rk,cr}	[N/mm ²]	4,0)	4,0	4		3,5		3,5
Installation safety factor		γinst	[-]					,2			
Flooded hole		τ _{Rk,cr}	[N/mm ²]	4,0		4,0	4		3,5		3,5
Installation safety factor		γinst	[-]					,4			
Characteristic bond resistance in c	racked co	ncret	e for a wo	orking	life o	f 100 y	years				
Dry and wet concrete		τ _{Rk,cr}	[N/mm ²]	2,5		2,5	2	,5	2,0		2,0
Installation safety factor		γinst	[-]				1	,2			
Flooded hole		τ _{Rk,cr}	[N/mm ²]	2,5		2,5	2	,5	2,0		2,0
Installation safety factor		γinst	[-]					,4			
	050/00		Г 7					1			
Factor for uncracked concrete	C50/60	Ψc	[-]					1			
Eastern fam ann alla al an th	C30/37							12			
Factor for cracked concrete	C40/50	Ψc	[-]					23			
	C50/60							30			
	4°C / 40°C	Ψ^{0}_{sus}	[-]				0,				
oad for a working life 50 years T2: 5	0°C / 80°C	т зиз	L J				0,	73			
Concrete cone failure											
		See 4	Annex C 2)							
		5007									
Splitting failure										_	_

WCF-EASF-C

Performances Hammer drilling, Dustless drilling Characteristic resistance for tension loads - threaded rod

Annex C 3

Combined pullout and concrete cone failure in uncracked concrete C20/25

Characteristic values of resistance to tension load of rebar

Table C5: Design method EN 1992-4

Hammer drilling									
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Characteristic bond resistance in uncracke	d cond	crete for a	a worki	ng life	of 50 y	ears a	nd 100	years	
Dry and wet concrete	τRk,ucr	[N/mm ²]	11,0	9,5	9,5	9,0	8,5	8,5	5,5
Installation safety factor	γinst	[-]				1,2			
Flooded hole	$ au_{Rk,ucr}$	[N/mm ²]	11,0	9,5	9,5	9,0	8,5	8,5	5,5
Installation safety factor	γinst	[-]				1,4			
Factor for influence of sustained T1: 24°C / 40°C load for a working life 50 years T2: 50°C / 80°C	Ψ^0 sus	[-]				0,75 0,73			
						,			
Dustless drilling						,			
Dustless drilling Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
	d cond	crete for				Ø16			Ø32
Size		crete for a [N/mm ²]				Ø16			Ø32 5,5
Size Characteristic bond resistance in uncracke		[N/mm ²]	a worki	ng life	of 50 y	Ø16 vears a	nd 100	years	
Size Characteristic bond resistance in uncracke Dry and wet concrete	τ _{Rk,ucr} γinst	[N/mm ²]	a worki	ng life	of 50 y	Ø16 vears a 9,0	nd 100	years	
Size Characteristic bond resistance in uncracke Dry and wet concrete Installation safety factor	τ _{Rk,ucr} γinst	[N/mm ²] [-] [N/mm ²]	a worki 11,0	ng life 9,5	of 50 y 9,5	Ø16 vears a 9,0 1,2	nd 100 8,5	years 8,5	5,5

	Ψΰ		l l
Factor for influence of sustained T1: 24°C / 40°C	Ψ^{0}_{sus}	[-]	0,75
load for a working life 50 years T2: 50°C / 80°C	Ψ sus	[-]	0,73
Concrete cone failure			

Factor for concrete cone failure	kucr,N	[-]	11
Edge distance	Ccr,N	[mm]	1,5h _{ef}

Splitting failure									
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Edge distance	C cr,sp	[mm]				1,5h _{et}	f		
Spacing	Scr,sp	[mm]				3,0het	f		

WCF-EASF, WCF-EASF-C, WCF-EASF-E

Performances

Hammer drilling, Dustless drilling Characteristic resistance for tension loads - rebar Annex C 4

Page 15 of 24 ETA 15/0702 issued on 03/07/2023 and replacing ETA 15/0702 issued on 07/07/202

Table C6: Design method EN 1992-4
Characteristic values of resistance to tension load of rebar for
WCF-EASF-C with installation temperature < -10°C

ize									
120			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
haracteristic bond resistance in uncracke	ed conc	crete for a	a worki	ng life	of 50 y	ears a	nd 100	years	
ry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	10,0	9,0	9,0	8,5	8,0	8,0	5,0
stallation safety factor	γinst	[-]				1,2			
looded hole	τRk,ucr	[N/mm ²]	10,0	9,0	9,0	8,5	8,0	8,0	5,0
stallation safety factor	γinst	[-]				1,4			
ustless drilling									
ize			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
haracteristic bond resistance in uncracke	ed conc	crete for	a worki	ng life	of 50 y	ears a	nd 100	years	
ry and wet concrete	τRk,ucr	[N/mm ²]	10,0	9,0	9,0	8,5	8,0	8,0	5,0
stallation safety factor	γinst	[-]				1,2			
looded hole	τRk,ucr	[N/mm ²]	10,0	9,0	9,0	8,5	8,0	8,0	5,0
stallation safety factor	γinst	[-]				1,4			
actor for concrete C50/60	Ψc	[-]				1			
actor for influence of sustained T1: 24°C / 40°C	Ψ^{0}_{sus}	[-]				0,75			
ad for a working life 50 years T2: 50°C / 80°C	T 000					0,73			
oncrete cone failure									
	See	Annex C	4						
plitting failure									
	See	Annex C	4						

WCF-EASF-C

Performances Hammer drilling, Dustless drilling Characteristic resistance for tension loads - rebar

Table C7: Design method EN 1992-4 Characteristic values of resistance to tension load of threaded rod

Combined pullout and concrete cone failure in concrete C20/25

Diamond core drilling											
Size				M8	M10	M12	M16	M20	M24	M27	M30
Characteristic bond resistance in u	ncracked	conc	rete for a	work	ing life	e of 50) years	s and	100 ye	ars	
Dry and wet concrete		τ _{Rk,ucr}	[N/mm ²]	9,0	8,5	8,5	8,0	7,5	7,0	5,5	4,5
Installation safety factor		γinst	[-]				1,	0			
Flooded hole		$\tau_{Rk,ucr}$	[N/mm ²]	8,0	7,0	6,5	6,5	6,0	5,0	4,0	3,5
Installation safety factor		γinst	[-]				1,	4			
Factor for uncracked concrete	C30/37 C40/50 C50/60	Ψc	[-]				1,(1,(1,()7			
Factor for influence of sustained load for a working life 50 years		Ψ^0 sus	[-]				0,7	77			
Concrete cone failure											
Factor for concrete cone failure for uncracked	concrete	k _{ucr,N}	[-]				11	1			
Edge distance		Ccr,N	[mm]				1,5	h _{ef}			
Splitting failure											
Size				M8	M10	M12	M16	M20	M24	M27	M30
Edge distance		Ccr,sp	[mm]				1,5	h _{ef}			
Spacing		S _{cr,sp}	[mm]				3,0	h _{ef}			

WCF-EASF, WCF-EASF-C, WCF-EASF-E

Performances Diamond core drilling Characteristic resistance for tension loads - threaded rod

Annex C 6

Page 17 of 24 ETA 15/0702 issued on 03/07/2023 and replacing ETA 15/0702 issued on 07/07/202

Table C8: Design method EN 1992-4

Characteristic values of resistance to tension load of threaded rod for WCF-EASF-C with installation temperature < -10°C

Size			M8	M10	M12	M16	M20	M24	M27	M30
Characteristic bond resistance in	uncracked conc	rete for a	work	ing life	e of 50) years	s and		ars	
Dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	8,5	8,0	8,0	7,5	7,0	6,5	5,0	4,0
Installation safety factor	γinst	[-]				1	,0			
Flooded hole	τ _{Rk,ucr}	[N/mm ²]	7,5	6,5	6,0	6,0	5,5	4,5	3,5	3,0
Installation safety factor	γinst	[-]				1	,4			
Factor for uncracked concrete	C30/37 C40/50 ψ _c C50/60	[-]				1,(1,(1,(
Factor for influence of sustained load for a working life 50 years	Ψ^0_{sus}	[-]				0,	77			
Concrete cone failure										
	See /	Annex C 6	;							

WCF-EASF-C

Performances Diamond core drilling Characteristic resistance for tension loads - threaded rod

Annex C 7

Page 18 of 24 ETA 15/0702 issued on 03/07/2023 and replacing ETA 15/0702 issued on 07/07/202

Table C9: Design method EN 1992-4 Characteristic values of resistance to tension load of rebar

Combined pullout and concrete cone failure in uncracked concrete C20/25

Diamond core drilling										
Size				Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Characteristic bond resistance in	uncracke	ed cor	ncrete for	a worki	ing life	of 50 y	ears a	nd 100	years	
Dry and wet concrete		τ _{Rk,ucr}	[N/mm ²]	9,0	8,5	8,0	7,5	7,0	6,0	3,0
Installation safety factor		γinst	[-]				1,2			
Flooded hole		τ _{Rk,ucr}	[N/mm ²]	9,0	8,5	8,0	7,5	7,0	5,5	2,5
Installation safety factor		γinst	[-]				1,4			
Factor for uncracked concrete	C30/37 C40/50 C50/60	Ψc	[-]				1,04 1,07 1,09			
Factor for influence of sustained load for a working life 50 years		Ψ^0 sus	[-]				0,77			
Concrete cone failure			1	-						
Factor for concrete cone failure		kucr,N	[-]				11			
Edge distance		Ccr,N	[mm]				1,5h _{ef}			

Splitting failure					-			-	
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Edge distance	C _{cr,sp}	[mm]	1,5h _{ef}						
Spacing	S _{cr,sp}	[mm]				3,0he	F		

WCF-EASF, WCF-EASF-C, WCF-EASF-E

Performances

Diamond core drilling Characteristic resistance for tension loads - rebar Annex C 8

Page 19 of 24 ETA 15/0702 issued on 03/07/2023 and replacing ETA 15/0702 issued on 07/07/202

Table C10: Design method EN 1992-4

Characteristic values of resistance to tension load of rebar for WCF-EASF-C with installation temperature < -10°C

Combined pullout and concrete cone failure in uncracked concrete C20/25

Diamond core drilling										
Size				Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Characteristic bond resistance in	uncracke	ed coi	ncrete for	a worki	ng life	of 50 y	ears a	nd 100	years	
Dry and wet concrete		$\tau_{Rk,ucr}$	[N/mm ²]	8,5	8,0	7,5	7,0	6,5	5,5	2,5
Installation safety factor		γinst	[-]				1,2			
Flooded hole		$ au_{Rk,ucr}$	[N/mm ²]	8,5	8,0	7,5	7,0	6,5	5,0	2,0
Installation safety factor		γinst	[-]				1,4			
Factor for uncracked concrete	C30/37 C40/50 C50/60	Ψc	[-]				1,04 1,07 1,09			
Factor for influence of sustained load for a working life 50 years		Ψ^0_{sus}	[-]				0,77			

Concrete cone failure

See Annex C 8

Splitting failure

See Annex C 8

WCF-EASF-C

Performances Diamond core drilling Characteristic resistance for tension loads - rebar

Annex C 9

Page 20 of 24 ETA 15/0702 issued on 03/07/2023 and replacing ETA 15/0702 issued on 07/07/202

Table C11: Design method EN 1992-4 Characteristic values of resistance to shear load of threaded rod

Size			M8	M10	M12	M16	M20	M24	M27	М3
KPG 4.6	V _{Rk,s}	[kN]	7	12	17	31	49	71	92	112
Partial safety factor	v κκ,s γMs	[-]	1	12	17	1,6	1	11	52	114
(PG 5.8	V _{Rk,s}		9	15	21	39	61	88	115	14(
Partial safety factor	γMs	[-]	0	10	21	1,2		00	110	140
KPG 8.8	V _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Partial safety factor	γMs	[-]	10	20	04	1,2		171	104	22
KPG 10.9	V _{Rk,s}		18	29	42	79	123	177	230	28
Partial safety factor	<u>γ</u> κκ,s γMs	[-]	10	20	72	1,			200	20
KPG A2-70, KPG A4-70	V _{Rk,s}		13	20	30	55	86	124	161	19
Partial safety factor	γMs	[-]	10	20	00	1,		127	101	10
KPG A4-80	V _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Partial safety factor	v κκ,s γMs	[-]	10	20	04	1,		171	104	22
KPG HCR	V _{Rk,s}		13	20	30	55	86	124	161	19
Partial safety factor	<u>ν κκ,s</u> γMs	[-]	10	20	00	1,2		127	101	1.00
(PG UHCR	VRk,s		13	20	30	55	86	124	161	19
Partial safety factor	v κκ,s γMs	[-]	10	20	00	1,		127	101	10
Characteristic resistance of group of fa						1,	00			
Ductility factor $k_7 = 1,0$ for steel with		ation A	> 8%							
	riupturo olorige). 070							
Steel failure with lever arm										
Size			M8	M10	M12	M16	M20	M24	M27	М3
KPG 4.6	M ^o Rk,s	[N.m]	15	30	52	133	260	449	666	90
Partial safety factor	γMs	[-]		00	02	1,6			000	00
(PG 5.8	M ^o Rk,s		19	37	66	166	325	561	832	112
Partial safety factor	γMs	[-]	10	0,	00	1,2		001	002	112
(PG 8.8	M ^o Rk,s		30	60	105	266	519	898	1332	179
Partial safety factor	γMs	[-]		00	100	1,2		000		
KPG 10.9	M ^o Rk,s		37	75	131	333	649	1123	1664	224
Partial safety factor	γMs	[-]	•.			1,5				
KPG A2-70, KPG A4-70	M ^o Rk,s		26	52	92	233	454	786	1165	157
Partial safety factor	γMs	[-]		02	02	1,5			1100	
KPG A4-80	M ^o Rk,s		30	60	105	266	519	898	1332	179
Partial safety factor	γMs			00	100	1,3		000	1002	170
KPG HCR	M ^o Rk,s		26	52	92	233	454	786	1165	157
Partial safety factor	γMs	[-]	20	02	02	1,2		100	1100	101
KPG UHCR	M ^o _{Rk,s}		26	52	92	233	454	786	1165	157
Partial safety factor	γMs	[-]		02	02	1,5			1100	
Concrete pry-out failure	1113					.,,				
Factor for resistance to pry-out failure	k ₈	[-]				2	>			
setter is resistance to pry out fullulo	110	LJ	1			2	_			
Concrete edge failure			M8	M10	M12	M16	M20	M24	M27	M3
Concrete edge failure Size								11116-7		
Size	dnom	[mm]	8	-	12	16	20	24	27	30
Size Dutside diameter of fastener		[mm] [mm]		10	12	16	20	24		30
Size		[mm] [mm]		-	12		20	24		3

Characteristic resistance for shear loads - threaded rod

Table C12: Design method EN 1992-4 Characteristic values of resistance to shear load of rebar

Steel failure without lever arm									
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Rebar BSt 500 S	$V_{Rk,s}$	[kN]	14	22	31	55	86	135	221
Partial safety factor	γMs	[-]				1,5			
Characteristic resistance of group of fastener	S								
Ductility factor $k_7 = 1,0$ for steel with rupture el	ongatio	ר A₅ > 8	3%						

Steel failure with lever arm			-	-				
Size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Rebar BSt 500 S	M ^o Rk,s [N.m]	33	65	112	265	518	1013	2122
Partial safety factor	γMs [-]				1,5			
Concrete pry-out failure								
Factor for resistance to pry-out failure	k ₈ [-]				2			

Concrete edge failure									
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Outside diameter of fastener	d _{nom} [mm] 8 10 12 16 20 2						25	32	
Effective length of fastener	lf	[mm]	min (h _{ef} , 8 d _{nom})						

WCF-EASF, WCF-EASF-C, WCF-EASF-E

Performances

Design according to EN 1992-4 Characteristic resistance for shear loads - rebar **Table C13:** Displacement of threaded rod under tension and shear load

 Hammer drilling, dustless drilling

							<u> </u>	-	
Size		M8	M10	M12	M16	M20	M24	M27	M30
Tensio	on load								
Uncra	cked conc	rete							
δ _{N0}	[mm/kN]	0,05	0,04	0,03	0,02	0,02	0,02	0,01	0,01
δ _{N∞}	[mm/kN]	0,11	0,09	0,06	0,04	0,03	0,02	0,02	0,02
Crack	ed concre	te							
δ _{N0}	[mm/kN]		0,08	0,09	0,05	0,03	0,02		
δ _{N∞}	[mm/kN]		0,51	0,32	0,18	0,13	0,11		
Shear	load								
δ _{V0}	[mm/kN]	0,48	0,30	0,20	0,11	0,10	0,08	0,06	0,05
δv∞	[mm/kN]	0,72	0,45	0,30	0,17	0,14	0,12	0,10	0,08

 Table C14: Displacement of threaded rod under tension and shear load

 Diamond core drilling

Size		M8	M10	M12	M16	M20	M24	M27	M30
Tensio	on load								
Uncra	cked conc	rete							
δ _{N0}	[mm/kN]	0,02	0,02	0,03	0,02	0,01	0,01	0,02	0,02
δ _{N∞}	[mm/kN]	0,11	0,07	0,05	0,03	0,02	0,02	0,02	0,02
Crack	ed concre	te							
δ_{N0}	[mm/kN]		0,07	0,05	0,05	0,03	0,03		
δ _{N∞}	[mm/kN]		0,37	0,23	0,16	0,10	0,07		
Shear	load								
δ _{V0}	[mm/kN]	0,48	0,30	0,20	0,11	0,10	0,08	0,06	0,05
δv∞	[mm/kN]	0,72	0,45	0,30	0,17	0,14	0,12	0,10	0,08

 Table C15: Displacement of rebar under tension and shear load

 Hammer drilling, dustless drilling

Size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Tensi	on load							
Uncra	cked conc	rete						
δ _{N0}	[mm/kN]	0,04	0,03	0,02	0,02	0,01	0,01	0,01
δ _{N∞}	[mm/kN]	0,09	0,07	0,05	0,03	0,02	0,01	0,01
Shear	load							
δ_{V0}	[mm/kN]	0,05	0,04	0,03	0,02	0,01	0,01	0,01
δ _{V∞}	[mm/kN]	0,08	0,06	0,05	0,03	0,02	0,01	0,01

Table C16: Displacement of rebar under tension and shear load

 Diamond core drilling

				<u> </u>				
Size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Tensi	on load							
Uncra	icked conc	rete						
δ _{N0}	[mm/kN]	0,04	0,04	0,03	0,02	0,02	0,02	0,02
δ _{N∞}	[mm/kN]	0,10	0,07	0,05	0,03	0,02	0,02	0,02
Sheai	load							
δ _{V0}	[mm/kN]	0,05	0,04	0,03	0,02	0,01	0,01	0,01
δv∞	[mm/kN]	0,08	0,06	0,05	0,03	0,02	0,01	0,01

WCF-EASF, WCF-EASF-C, WCF-EASF-E

Performances

Displacement

Annex C 12

Size			M10	M12	M16	M20	M24
Fension load							
Steel failure		_					
Characteristic resistance KPG 4.6	N _{Rk,s,eq}	[kN]	23	34	63	98	141
Partial safety factor	γMs	F 3			2,00		
Characteristic resistance KPG 5.8	N _{Rk,s,eq}	[kN]	29	42	79	123	177
Partial safety factor	γMs	[-]			1,50		
Characteristic resistance KPG 8.8	N _{Rk,s,eq}	[kN]	46	67	126	196	282
Partial safety factor	γMs	[-]			1,50		
Characteristic resistance KPG 10.9	N _{Rk,s,eq}	[kN]	58	84	157	245	353
Partial safety factor	γMs	F 3			1,33		
Characteristic resistance KPG A2-70, KPG A4-70	$N_{Rk,s,eq}$	[kN]	41	59	110	172	247
Partial safety factor	γMs	[-]			1,87		
Characteristic resistance KPG A4-80	N _{Rk,s,eq}	[kN]	46	67	126	196	282
Partial safety factor	γMs			•	1,60	•	
Characteristic resistance KPG HCR	N _{Rk,s,eq}		41	59	110	172	247
Partial safety factor	γMs				1,50		•
Characteristic resistance KPG UHCR	N _{Rk,s,eq}		41	59	110	172	247
Partial safety factor	γMs	[-]			1,87	1	
Characteristic resistance to pull-out for a wo	orking li	fe of 50 y	ears				
Dry, wet concrete and flooded hole		[N/mm ²]	3,5	3,5	3,5	3,5	3,5
WCF-EASF-C with installation temperature							
Dry, wet concrete and flooded hole		[N/mm ²]	3,3	3,3	3,3	3,3	3,3
Characteristic resistance to pull-out for a wo			vears				
Dry, wet concrete and flooded hole		[N/mm ²]	3,0	3,0	3,0	2,2	2,2
NCF-EASF-C with installation temperature	< -10°C	;					
Dry, wet concrete and flooded hole	τRk,C1	[N/mm ²]	2,8	2,8	2,8	2,1	2,1
nstallation safety factor – Dry and wet concrete	γinst	[-]			1,2		
nstallation safety factor – Flooded hole	γinst	[-]			1,4		
Shear load							
Steel failure without lever arm							
Characteristic resistance KPG 4.6		[LN]	7	10	00	20	40
Partial safety factor	V _{Rk,s,eq}	[kN]	1	10	23	30	40
-	γMs		0	40		20	F 4
Characteristic resistance KPG 5.8	V _{Rk,s,eq}		9	13	28	38	51
Partial safety factor	γMs		4.4	0.4	1,25	04	
Characteristic resistance KPG 8.8	$V_{Rk,s,eq}$		14	21	45	61	81
Partial safety factor	γMs				1,25		
Characteristic resistance KPG 10.9	V _{Rk,s,eq}		18	26	56	76	101
Partial safety factor	γMs	[-]	10		1,50	= 0	
Characteristic resistance KPG A2-70, KPG A4-70	$V_{Rk,s,eq}$		12	18	39	53	71
Partial safety factor	γMs				1,56		1
Characteristic resistance KPG A4-80	$V_{Rk,s,eq}$		14	21	45	61	81
Partial safety factor	γMs				1,33	1	1
Characteristic resistance KPG HCR	V _{Rk,s,eq}		12	18	39	53	71
Partial safety factor	γMs				1,25	,	1
Characteristic resistance KPG UHCR	$V_{Rk,s,eq}$	[kN]	12	18	39	53	71
Partial safety factor	γMs	[-]			1,56		
Factor for annular gap	$lpha_{gap}$	[-]			0,5		
Note: Debare are not qualified for acia	mia das	aian					
Note: Rebars are not qualified for seis	mic des	syn					
/CF-EASF, WCF-EASF-C, WCF-EASF	·-E						

Table C17: Seismic performance category C1 - Hammer drilling, Dustless drilling

Page 24 of 24 ETA 15/0702 issued on 03/07/2023 and replacing ETA 15/0702 issued on 07/07/202

Hammer drilling, Dustless drilling Seismic performance category C1