

KLIMAS Sp. z o.o. ul. Wincentego Witosa 135/137 Kuźnica Kiedrzyńska 42-233 Mykanów tel. +48 34 3777 100, fax +48 34 328 01 73

DECLARACTION OF PERFORMANCE No 50/SZ/15

1. Unique identification code of the product-type: WCF-EASF, WCF-EASF-C, WCF-EASF-E

2. Intended use/es:

Product	Intended use
Bonded anchor for use in concrete	Post-installed fastening in cracked or uncracked concrete, see appendix, especially Annexes B1 to B4

3. Manufacturer: KLIMAS Sp. z o.o.

ul. Wincentego Witosa 135/137

Kuźnica Kiedrzyńska 42-233 Mykanów

4. Authorised representative: not applicable

5. System/s of AVCP: System 1

6. European Assessment Document: a) EAD 330499-01-0601

b) European Technical Assessments - ETA-15/0702 of 03/07/2023

c) TECHNICKY A ZKUSEBNI USTAV STAVEBNI PRAHA s.p.

d) Identification number of notified body- 1020

7. Declared performance/s:

Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load	See appendix, especially Annexes C1 to C9
(static and quasi-static loading)	, , , , , , , , , , , , , , , , , , , ,
Characteristic resistance to shear load	See appendix, especially Annexes C10, C11
(static and quasi-static loading)	See appendix, especially Affrexes C10, C11
Displacements under short-term and long-term loading	See appendix, especially Annexes C12
Characteristic resistance	Con annuality conscielly America C42
for seismic performance categories C1	See appendix, especially Annexes C13

8. Appropriate Technical Documentation and/or Specific Technical Documentation:

not applicable

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

Kuźnica Kiedrzyńska 10.07.2023r. (place and date of issue) Adam Szczepanowski

Klerownik działu technicznego

Adam Szczepanowski

415 =

(signature)

This declaration replaces the declaration from 02.12.2020.

This DoP has been prepared in different languages. In case there is a dispute on the interpretation the english version shall always prevail. The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

Appendix 1 of 23

1. Technical description of the product

The WCF-EASF, WCF-EASF-C (faster curing time) and WCF-EASF-E (extended processing time) with steel elements is bonded anchor (injection type).

Steel elements can be galvanized or stainless steel threaded rod or rebar.

Steel element is placed into a drilled hole filled with injection mortar. The steel element is anchored via the bond between metal part, injection mortar and concrete. The anchor is intended to be used with embedment depth from 8 diameters to 20 diameters.

The illustration and the description of the product are given in Annex A.

2. Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years and 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance		
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C 1 to C 9		
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 10, C 11		
Displacements under short-term and long-term loading	See Annex C 12		
Characteristic resistance for seismic performance categories C1	See Annex C 13		

3.2 Hygiene, health and environment (BWR 3)

No performance determined.

3.3 General aspects relating to fitness for use

Durability and serviceability are only ensured if the specifications of intended use according to Annex B 1 are kept.

4. Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base

According to the Decision 96/582/EC of the European Commission¹ the system of assessment verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table apply.

Product	Intended use	Level or class	System
Metal anchors for	For fixing and/or supporting to concrete,		
use in concrete	structural elements (which contributes to	-	1
	the stability of the works) or heavy units		

Official Journal of the European Communities L 254 of 08.10.1996

Appendix 2 of 23

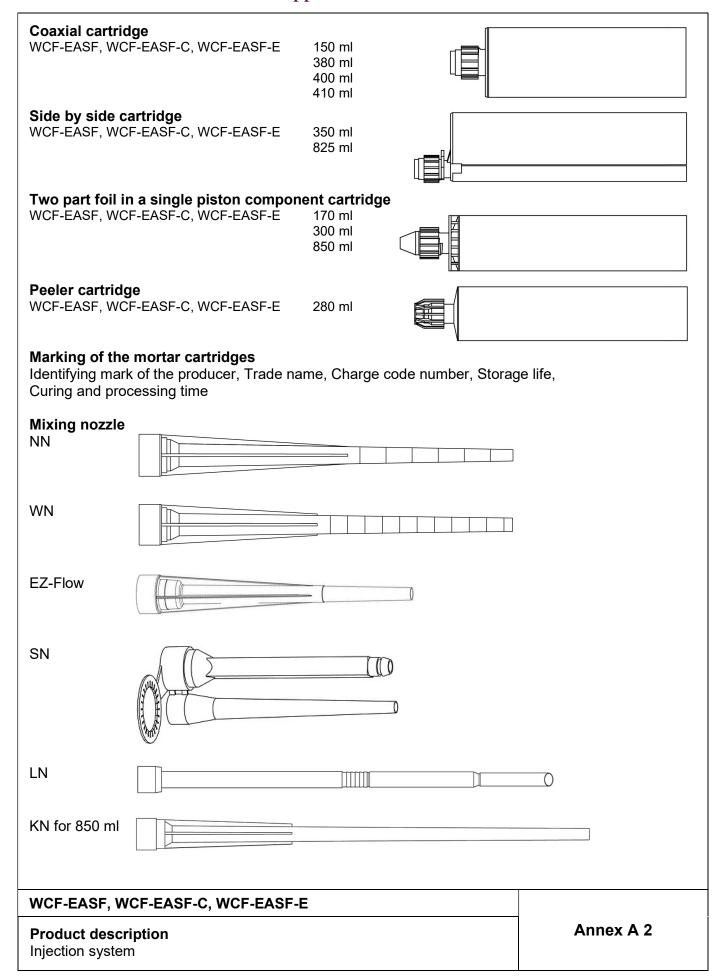
5. Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD

The factory production control shall be in accordance with the control plan which is a part of the technical documentation of this European Technical Assessment. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited at Technical and Test Institute for Construction Prague.² The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

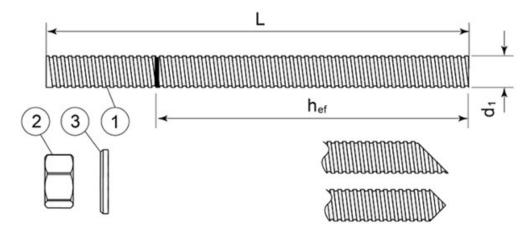
Issued in Prague on 03.07.2023

By Ing. Jiří Studnička, Ph.D. Head of the Technical Assessment Body

Page 3 of 24 ETA 15/0702 issued on 03/07/2023 and replacing ETA 15/0702 issued on 02/12/2020


The control plan is a confidential part of the documentation of the European Technical Assessment, but not published together with the ETA and only handed over to the approved body involved in the procedure of AVCP.

Appendix 3 of 23


Threaded rod Reinforcing bar WCF-EASF, WCF-EASF-E Annex A 1 **Product description**

Installed conditions

Appendix 4 of 23

Threaded rod M8, M10, M12, M16, M20, M24, M27, M30

Standard commercial threaded rod with marked embedment depth

Part	Designation	Material									
Steel, Steel, Steel,	Steel, zinc plated ≥ 5 µm acc. to EN ISO 4042 or Steel, Hot-dip galvanized ≥ 40 µm acc. to EN ISO 1461 and EN ISO 10684 or Steel, zinc diffusion coating ≥ 15 µm acc. to EN 13811 or Steel, zinc flake ≥ 8 µm acc. to EN ISO 2178:2016										
1	Anchor rod	Steel, EN 10087 or EN 10263 KPG 4.6, KPG 5.8, KPG 8.8, KPG 10.9* EN ISO 898-1									
2	Hexagon nut EN ISO 4032	According to threaded rod, EN 20898-2									
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod									
Stain	less steel										
1	Anchor rod	KPG A2-70, KPG A4-70, KPG A4-80 EN ISO 3506									
2	Hexagon nut EN ISO 4032	According to threaded rod									
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod									
High	corrosion resistant steel										
1	Anchor rod	KPG HCR, KPG UHCR EN 10088-1									
2	Hexagon nut EN ISO 4032	According to threaded rod									
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod									

^{*}Galvanized rod of high strength are sensitive to hydrogen induced brittle failure

WCF-EASF, WCF-EASF-C, WCF-EASF-E	
Product description Threaded rod and materials	Annex A 3

Rebar Ø8, Ø10, Ø12, Ø16, Ø20, Ø25, Ø32

Standard commercial reinforcing bar with marked embedment depth

Product form	Bars and de	-coiled rods					
Class	Class						
Characteristic yield strength fyk or fo	_{0,2k} (MPa)	400 to	o 600				
Minimum value of $k = (f_t/f_y)_k$		≥ 1,08	≥ 1,15				
	· //						
Characteristic strain at maximum for	Characteristic strain at maximum force ε _{uk} (%)						
Bendability		Bend/Rebend test					
Maximum deviation from nominal	Nominal bar size (mm)						
mass (individual bar) (%)	≤ 8	±6,0					
	> 8						
Bond: Minimum relative rib area,							
$f_{R,min}$	f _{R,min} 8 to 12						
	> 12	0,056					

WCF-EASF, WCF-EASF-C, WCF-EASF-E	
Product description Rebars and materials	Annex A 4

Specifications of intended use

Anchorages subject to:

- Static and quasi-static load.
- Seismic actions category C1 (max w = 0,5 mm): threaded rod size M10, M12, M16, M20, M24

Base materials

- Uncracked concrete.
- Cracked and uncracked concrete for threaded rod size M10, M12, M16, M20, M24
- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum and C50/60 at maximum according EN 206-1:2000-12.

Temperature range:

• -40°C to +80°C (max. short. term temperature +80°C and max. long term temperature +50°C)

Use conditions (Environmental conditions)

- (X1) Structures subject to dry internal conditions (zinc coated steel, stainless steel, high corrosion resistance steel).
- (X2) Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel A4, high corrosion resistant steel).
- (X3) Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

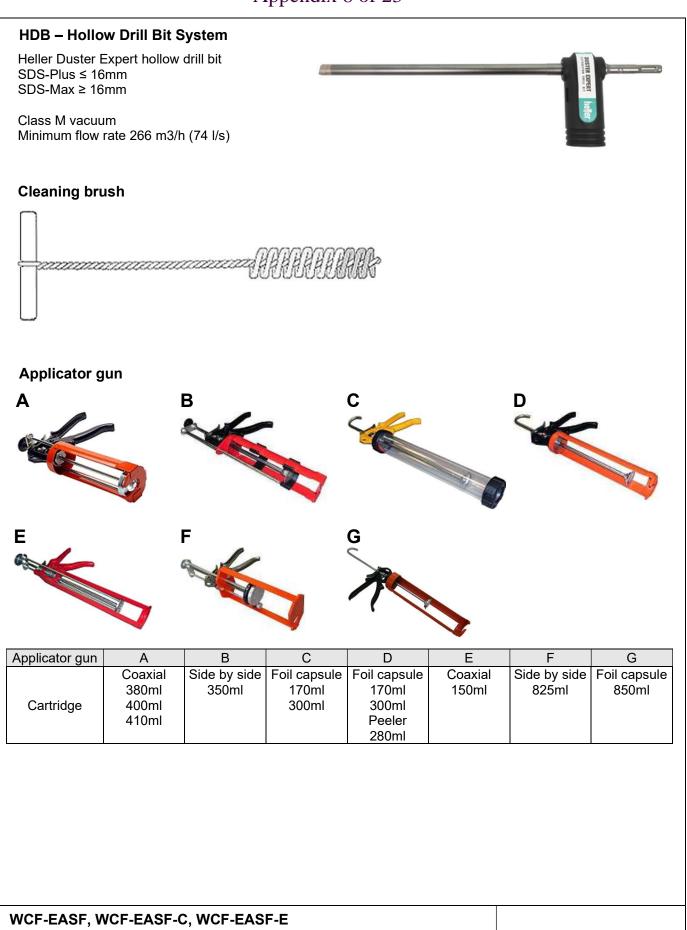
Concrete conditions:

- 11 installation in dry or wet (water saturated) concrete and use in service in dry or wet concrete.
- 12 installation in water-filled (not sea water) and use in service in dry or wet concrete

Design:

- The anchorages are designed in accordance with the EN 1992-4 under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings.
- Anchorages under seismic actions (cracked concrete) have to be designed in accordance with EN 1992-4.

Installation:


- Hole drilling by hammer drilling, dustless drilling or diamond core drilling mode.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Installation direction:

• D3 – downward and horizontal and upwards (e.g. overhead) installation

WCF-EASF, WCF-EASF-E	
Intended use Specifications	Annex B 1

Appendix 8 of 23

Annex B 2

Intended use

Applicator guns

Hollow drill bit system, Cleaning brush

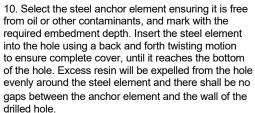
SOLID SUBSTRATE INSTALLATION METHOD

1. Using the SDS hammer drill (HD) in rotary hammer mode for drilling, with a carbide tipped drill bit of the appropriate size, drill the hole to the specified hole diameter and depth.

2. Select the correct air lance, insert to the bottom of the hole, and depress the trigger for 2 seconds. The compressed air must be clean and free from water and oil, with a minimum pressure of 90 psi (6 bar). A manual pump may be used for certain diameters and depths; check the approval document. Perform the blowing operation twice.

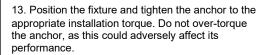
3. Select the correct size hole cleaning brush. Ensure that the brush is in good condition and of the correct diameter. Insert the brush to the bottom of the hole, using a brush extension if needed to reach the bottom. Withdraw with a twisting motion. There should be a positive interaction between the bristles of the brush and the sides of the drilled hole. Perform the brushing operation twice.

4. Repeat step 2 (blowing operation x2)


5. Repeat step 3 (brushing operation x2)

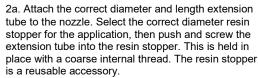
6. Repeat step 2 (blowing operation x2)

7. Select the most appropriate static mixer nozzle, checking that the mixing elements are present and t for purpose. Never modify the mixer. Attach the mixer nozzle to the cartridge. Check the dispensing tool is in good working order. Place the cartridge into the dispensing tool.



- 8. Extrude some resin to waste until an even coloured mixture is achieved. The cartridge is now ready for use.
- 9. Insert the mixing nozzle to the bottom of the hole. Extrude the resin and slowly withdraw the nozzle from the hole. Ensure no air voids are created as the nozzle is withdrawn. Inject resin until the hole is approximately ¾ full and remove the nozzle from the hole.

- 11. Clean any excess resin from around the mouth of the hole.
- 12. Refer to the working and loading times within the tables to determine the appropriate cure time.



DEEP EMBEDMENT & OVERHEAD INSTALLATION METHOD

1a. Perform steps 1-8 under "solid substrate installation method".

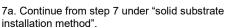
3a. Push the resin stopper and extension tube to the back of the drill hole.

4a. Ensure the extension tube is angled to allow free movement of the resin stopper as the resin is extruded

5a. Continue from step 10 under "solid substrate installation method".

DIAMOND CORE DRILLING

1b. Using a diamond core drill (DD) and following the manufacturer's instructions, drill the specified diameter hole to the correct embedment depth then remove the concrete core.


2b. Starting from the back of the hole, flush with pressurised water a minimum of two times and until there is only clean water.

3b. Select the correct size hole cleaning brush. Ensure that the brush is in good condition and of the correct diameter. Insert the brush to the bottom of the hole, using a brush extension if needed to reach the bottom. Withdraw with a twisting motion. There should be a positive interaction between the bristles of the brush and the sides of the drilled hole. Perform the brushing operation twice.

- 4b. Repeat step 2b (ushing operation x2).
- 5b. Repeat step 3b (brushing operation x2).
- 6a. Using the correct air lance and starting from the back of the hole and withdrawing, perform a minimum of two blowing operations and ensure that the hole is clear of debris and excess water.

DUSTLESS DRILLING

1c. Using the specified hollow drill bit (HDB) and vacuum system and following the manufacturer's instructions, drill the specified diameter hole to the correct embedment depth. Ensure that the minimum vacuum specifications are met and that the vacuum is turned on.

2c. The hole should be inspected to ensure the system has worked correctly. If the hole is clear of dust and debris, no further cleaning is required.

3c. Continue from step 7 under "solid substrate installation method".

WCF-EASF, WCF-EASF-C, WCF-EASF-E

Intended use Installation procedure Annex B 3

Table B1: Installation parameters of threaded rod

Size			M8	M10	M12	M16	M20	M24	M27	M30
Nominal drill hole diameter	Ød₀	[mm]	10	12	14	18	22	26	30	35
Diameter of cleaning brush	d♭	[mm]	14	14	20	20	29	29	40	40
Manual pump cleaning					h _{ef} < 3	00 mm				
Torque moment	$max T_{fix}$	[Nm]	10	20	40	80	150	200	240	275
Depth of drill hole for hef,min	$h_0 = h_{ef}$	[mm]	64	80	96	128	160	192	216	240
Depth of drill hole for hef,max	$h_0 = h_{ef}$	[mm]	160	200	240	320	400	480	540	600
Minimum edge distance	Cmin	[mm]	35	40	50	65	80	96	110	120
Minimum spacing	Smin	[mm]	35	40	50	65	80	96	110	120
Minimum thickness of member	h_{min}	[mm]	h _{ef} +	30 mn	n ≥ 100) mm		h _{ef} +	2d ₀	·

Table B2: Installation parameters of rebar

Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Nominal drill hole diameter	$ \emptyset d_0 $	[mm]	12	14	16	20	25	32	40
Diameter of cleaning brush	d _b	[mm]	14	14	19	22	29	40	42
Manual pump cleaning				h _{ef}	< 300 r	nm			
Depth of drill hole for hef,min	$h_0 = h_{ef}$	[mm]	64	80	96	128	160	200	256
Depth of drill hole for hef,max	$h_0 = h_{ef}$	[mm]	160	200	240	320	400	500	640
Minimum edge distance	C _{min}	[mm]	35	40	50	65	80	100	130
Minimum spacing	Smin	[mm]	35	40	50	65	80	100	130
Minimum thickness of member	h_{min}	[mm]	h _{ef} -	- 30 mn	n ≥ 100	mm		ո _{ef} + 2d։)

Table B3: Minimum curing time

WCF-EASF									
Resin cartridge temperature [°C]	T Work [mins]	Base material Temperature [°C]	T Load [mins]						
+10	30 mins	-10 to -5	24 hours						
+5	20 mins	-5 to 0	300 mins						
0 to +5	15 mins	0 to +5	210 mins						
+5 to +10	10 mins	+5 to +10	145 mins						
+10 to +15	8 mins	+10 to +15	85 mins						
+15 to +20	6 mins	+15 to +20	75 mins						
+20 to +25	5 mins	+20 to +25	50 mins						
+25 to +30	4 mins	+25 to +30	40 mins						

WCF-EASF-C			
Resin cartridge temperature [°C]	T Work [mins]	Base material Temperature [°C]	T Load [mins]
+20	40 mins	-20 to -15 ¹⁾	24 hours
+20	30 mins	-15 to -10 ¹⁾	18 hours
+5	20 mins	-10 to -5	12 hours
+5	15 mins	-5 to 0	100 mins
0 to +5	10 mins	0 to +5	75 mins
+5 to +20	5 mins	+5 to +20	50 mins
+20	100 second	+20	20 mins

¹⁾ characteristic values of resistance see Annex C 3, C 5, C 7 and C 9

WCF-EASF-E			
Resin cartridge temperature [°C]	T Work [mins]	Base material Temperature [°C]	T Load [mins]
+15 to +20	15 mins	+15 to +20	5 hours
+20 to +25	10 mins	+20 to +25	145 mins
+25 to +30	7.5 mins	+25 to +30	85 mins
+30 to +35	5 mins	+30 to +35	50 mins
+35 to +40	3.5 mins	+35 to +40	40 mins

T work is typical gel time at highest temperature T load is set at the lowest temperature

allation parameters	
Intended use Installation parameters Curing time	Annex B 4

Appendix 11 of 23

Table C1: Design method EN 1992-4 Characteristic values of resistance to tension load of threaded rod

Steel failure - Characteristic re	sistance									
Size			М8	M10	M12	M16	M20	M24	M27	M30
KPG 4.6	$N_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
Partial safety factor	γMs	[-]				2,	00			
KPG 5.8	$N_{Rk,s}$	[kN]	18	29	42	79	123	177	230	281
Partial safety factor	γMs	[-]		•		1,	50			
KPG 8.8	$N_{Rk,s}$	[kN]	29	46	67	126	196	282	367	449
Partial safety factor	γMs	[-]				1,	50			
KPG 10.9	$N_{Rk,s}$	[kN]	37	58	84	157	245	353	459	561
Partial safety factor	γMs	[-]				1,	33			
KPG A2-70, KPG A4-70	$N_{Rk,s}$	[kN]	26	41	59	110	172	247	321	393
Partial safety factor	γMs	[-]		•	•	1,	87			
KPG A4-80	$N_{Rk,s}$	[kN]	29	46	67	126	196	282	367	449
Partial safety factor	γMs	[-]		•	•	1,	60			
KPG HCR	$N_{Rk,s}$	[kN]	26	41	59	110	172	247	321	393
Partial safety factor	γMs	[-]				1,	50			
KPG UHCR	$N_{Rk,s}$	[kN]	26	41	59	110	172	247	321	393
Partial safety factor	γMs	[-]				1,	87			

Table C2: Design method EN 1992-4 Steel failure - Characteristic values of resistance to tension load of rebar

Steel failure - Characteristic resistance									
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Rebar BSt 500 S	$N_{Rk,s}$	[kN]	28	43	62	111	173	270	442
Partial safety factor	γMs	[-]				1,4			

WCF-EASF, WCF-EASF-C, WCF-EASF-E	
Performances Steel failure characteristic resistance	Annex C 1

Table C3: Design method EN 1992-4

Characteristic values of resistance to tension load of threaded rod

			4 00010-
Combined pullout	and concrete co	na tailura in can	croto (201/25)
icombined bullout	. and concrete co	ile lallule III col	いいしに ひといとり

Size			M8	M10	M12	M16	M20	M24	M27	M30
Characteristic bond resistance in	n uncracked conc	rete for a	work	ing lif	e of 50) years	s and	100 ye	ars	
Dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	10,0	9,5	9,5	9,0	8,5	8,0	6,5	5,5
Installation safety factor	γinst	[-]			1	,2			1	,4
Flooded hole	τ _{Rk,ucr}	[N/mm ²]	8,5	7,5	7,0	7,0	6,5	5,5		
Installation safety factor	γinst	[-]		·		1	4			
Size			M1	0	M12	M ²	16	M20	N	/124
Characteristic bond resistance in	n cracked concret	e for a wo	orking	life d	of 50 ye	ears				
Dry and wet concrete	$ au_{Rk,cr}$	[N/mm ²]	4,5	5	4,5	4	5	4,0	4	4,0
Installation safety factor	γinst	[-]				1,	2			
Flooded hole	τ _{Rk,cr}	[N/mm ²]	4,5	5	4,5	4	5	4,0	4	4,0
Installation safety factor	γinst	[-]				1,	4			
Characteristic bond resistance in	n cracked concret	e for a wo	orking	life o	of 100 y	years				
Dry and wet concrete	$ au_{Rk,cr}$	[N/mm ²]	3,0)	3,0	3,	0	2,5		2,5
Installation safety factor	γinst	[-]				1,	2			
Flooded hole	$ au_{Rk,cr}$	[N/mm ²]	3,0)	3,0	3,	0	2,5		2,5
Installation safety factor	γinst	[-]				1	4			

motandion carety lactor		111131						, .			
Dustless drilling											
Size				M8	M10	M12	M16	M20	M24	M27	M30
Characteristic bond resistan	cond	rete for a	work	ng lif	e of 50	year	s and	100 ye	ars		
Dry and wet concrete		τ _{Rk,ucr}	[N/mm ²]	10,0	9,5	9,5	9,0	8,5	8,0	6,5	5,5
Installation safety factor		γinst	[-]				1	,2			
Flooded hole		τ _{Rk,ucr}	[N/mm ²]	8,5	7,5	7,0	7,0	6,5	5,5	4,5	4,0
Installation safety factor		γinst	[-]				1	,4			
Size				M1	0	M12	M	16	M20	V	/124
Characteristic bond resistan	ce in cracked co	ncre	te for a w	orking	life o	of 50 ye	ears				
Dry and wet concrete		τ _{Rk,cr}	[N/mm ²]	4,5	;	4,5	4	,5	4,0		4,0
Installation safety factor		γinst	[-]				1	,2			
Flooded hole		τ _{Rk,cr}	[N/mm ²]	4,5	5	4,5		,5	4,0		4,0
Installation safety factor		γinst	[-]				1	,4			
Characteristic bond resistan	ce in cracked co	ncre	te for a w	orking	life o	f 100 y	years				
Dry and wet concrete		τ _{Rk,cr}	[N/mm ²]	3,0)	3,0	3	,0	2,5		2,5
Installation safety factor		γinst	[-]					,2			
Flooded hole		τ _{Rk,cr}	[N/mm ²]	3,0)	3,0	3	,0	2,5		2,5
Installation safety factor		γinst	[-]				1	,4			
Factor for uncracked concrete	C50/60	Ψс	[-]	1				1			
	C30/37						1,	12			
Factor for cracked concrete	C40/50	Ψс	[-]	İ				23			
	C50/60	•		i			1,	30			
Factor for influence of sustained	T1: 24°C / 40°C	0					0,	75			
load for a working life 50 years	T2: 50°C / 80°C		[-]				0,	73			
Concrete cone failure											
Factor for concrete cone failure for un	cracked concrete	k _{ucr,N}					1	1			
Factor for concrete cone failure for c		k _{cr,N}	[-]				7,				
Edge distance		Ccr.N	[mm]				1,5				

load for a working life 30 years 12. 30 C7 80 C	,		0,73
Concrete cone failure			
Factor for concrete cone failure for uncracked concrete	k _{ucr,N}	F 1	11
Factor for concrete cone failure for cracked concrete	k _{cr,N}	[-]	7,7
Edge distance	C _{cr} ,N	[mm]	1,5h _{ef}

Splitting failure		=							
Size		M8	M10	M12	M16	M20	M24	M27	M30
Edge distance C _{cr,sp}	[mm]	1,5h _{ef}							
Spacing S _{cr,sp}	[mm]	3,0h _{ef}							

Performances Hammer drilling, Dustless drilling

Characteristic resistance for tension loads - threaded rod

Annex C 2

Table C4: Design method EN 1992-4

Characteristic values of resistance to tension load of threaded rod for WCF-EASF-C with installation temperature < -10°C

(Combined	pullout and concrete cone failure in concrete C20/25
Combined	Dullout and Concrete Cone failure in Concrete Czv/zo
	Puncus una control control una control

Hammer drilling									
Size			M8	M10	M12	M16	M20	M24	M27 M30
Characteristic bond resistand	e in uncracked cond	rete for a	worki	na lif	e of 50	vear	s and	100 ve	ars
Dry and wet concrete	TRk,ucr	[N/mm ²]	9,5	9,0	9,0	8.5	8,0	7,5	6,0 5,0
Installation safety factor	γinst	[-]	- 0,0	0,0	,	,2	0,0	1 ,0	1,4
Flooded hole	τ _{Rk,ucr}	[N/mm ²]	8.0	7,0	6,5	6,5	6,0	5,0	-,,,
Installation safety factor	γinst	[-]	- , -	, , -	- , -		,4		
Size			M1	0	M12	M	16	M20	M24
Characteristic bond resistant	e in cracked concre	te for a w	orking	life o	of 50 ve			-	
Dry and wet concrete	τ _{Rk,cr}	[N/mm ²]	4,0		4,0		,0	3,5	3,5
Installation safety factor	γinst	[-]		<u> </u>	.,.		,2	0,0	, 0,0
Flooded hole	TRk,cr	[N/mm ²]	4,0)	4,0		,0	3,5	3,5
Installation safety factor	γinst	[-]	,		,-	_	,4	-,-	- , -
Characteristic bond resistant		te for a w	orking	life o	of 100 v	vears	,		
Dry and wet concrete	TRk,cr	0-	2,5		2,5		,5	2,0	2,0
Installation safety factor	γinst	[-]			,_		,2	_, _	
Flooded hole	TRk,cr	[N/mm ²]	2,5	;	2,5		,5	2,0	2,0
Installation safety factor	γinst	[-]	,	-	,-		,4	,-	, , ,
Dustless drilling							1	T	
Size			M8	M10				M24	M27 M30
Characteristic bond resistand	e in uncracked cond		_				s and		
Dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	9,5	9,0	9,0	8,5	8,0	7,5	6,0 5,0
Installation safety factor	γinst	[-]			_		,2		
Flooded hole	$ au_{Rk,ucr}$	[N/mm ²]	8,0	7,0	6,5	6,5	6,0	5,0	4,0 3,5
Installation safety factor	γinst	[-]				_	,4		-
Size			M1	0	M12	M	16	M20	M24
Characteristic bond resistand	ce in cracked concre		orking	life o	of 50 ye	ears			
Dry and wet concrete	τ _{Rk,cr}	[N/mm ²]	4,0)	4,0		,0	3,5	3,5
Installation safety factor	γinst	[-]					,2		
Flooded hole	τ _{Rk,cr}	[N/mm ²]	4,0)	4,0	_	,0	3,5	3,5
Installation safety factor	γinst	[-]					,4		
Characteristic bond resistand	e in cracked concre								
Dry and wet concrete	τ _{Rk,cr}	[N/mm ²]	2,5	,	2,5		,5	2,0	2,0
Installation safety factor	γinst	[-]					,2		
Flooded hole	τ _{Rk,cr}	[N/mm ²]	2,5)	2,5		,5	2,0	2,0
Installation safety factor	γinst	[-]				1	,4		
Factor for uncracked concrete	C50/60 ψ _c	[-]					1		
	C30/37		f				12		
Factor for cracked concrete	C40/50 ψ _c	[-]	İ				23		
1	C50/60	.,					30		
Factor for influence of sustained	T1. 24°C / 40°C						75		
load for a working life 50 years	T2: 50°C / 80°C Ψ ⁰ sus	[-]	ľ				73		
-									
Concrete cone failure									
	See /	Annex C 2	2						
Splitting failure									
	<u> </u>	Annex C 2)						
	500	nndvi'							
		AIIIIEA C 2	<u>-</u>						

WCF-EASF-C	
Performances Hammer drilling, Dustless drilling	Annex C 3
Characteristic resistance for tension loads - threaded rod	

Table C5: Design method EN 1992-4

Characteristic values of resistance to tension load of rebar

Combined pullout and concrete cone failure in uncracked concrete C20/25

Hammer drilling									
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Characteristic bond resistance in uncracked	d cond	rete for	a worki	ng life	of 50 y	ears a	nd 100	years	
Dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	11,0	9,5	9,5	9,0	8,5	8,5	5,5
Installation safety factor	γinst	[-]				1,2			
Flooded hole	τ _{Rk,ucr}	[N/mm ²]	11,0	9,5	9,5	9,0	8,5	8,5	5,5
Installation safety factor	γinst	[-]				1,4			•
Factor for influence of sustained T1: 24°C / 40°C load for a working life 50 years T2: 50°C / 80°C	ψ^0_{sus}	[-]				0,75 0,73			

Dustless drilling									
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Characteristic bond resistance in uncracked concrete for a working life of 50 years and 100 years									
Dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	11,0	9,5	9,5	9,0	8,5	8,5	5,5
Installation safety factor	γinst	[-]				1,2			
Flooded hole	τ _{Rk,ucr}	[N/mm ²]	11,0	9,5	9,5	9,0	8,5	8,5	5,5
Installation safety factor	γinst	[-]				1,4			
Factor for concrete C50/60	ψс	[-]				1			
Factor for influence of sustained T1: 24°C / 40°C load for a working life 50 years T2: 50°C / 80°C	ψ^0_{sus}	[-]				0,75 0,73			

Concrete cone failure			
Factor for concrete cone failure	k _{ucr,N}	[-]	11
Edge distance	C _{cr,N}	[mm]	1,5h _{ef}

Splitting failure									
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Edge distance	C _{cr,sp}	[mm]				1,5h _{et}	f		
Spacing	S _{cr,sp}	[mm]				3,0he	f		

WCF-EASF, WCF-EASF-C, WCF-EASF-E	
Performances	Annex C 4
Hammer drilling, Dustless drilling	
Characteristic resistance for tension loads - rebar	

Appendix 15 of 23

Table C6: Design method EN 1992-4

Characteristic values of resistance to tension load of rebar for

WCF-EASF-C with installation temperature < -10°C

Combined pullout and concrete cone failure in uncracked concrete C20/25

Hammer drilling									
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Characteristic bond resistance in ur	ncracked cond	crete for	a worki	ng life	of 50 y	ears a	nd 100	years	
Dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	10,0	9,0	9,0	8,5	8,0	8,0	5,0
Installation safety factor	γinst	[-]				1,2			
Flooded hole	τ _{Rk,ucr}	[N/mm ²]	10,0	9,0	9,0	8,5	8,0	8,0	5,0
Installation safety factor	γinst	[-]		•	•	1,4	•	•	

Dustless drilling									
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Characteristic bond resistance in uncracked concrete for a working life of 50 years and 100 years									
Dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	10,0	9,0	9,0	8,5	8,0	8,0	5,0
Installation safety factor	γinst	[-]				1,2			
Flooded hole	τ _{Rk,ucr}	[N/mm ²]	10,0	9,0	9,0	8,5	8,0	8,0	5,0
Installation safety factor	γinst	[-]				1,4			
Factor for concrete C50/60	Ψc	[-]				1			
Factor for influence of sustained T1: 24°C / 40°C load for a working life 50 years T2: 50°C / 80°C	ψ^0_{sus}	[-]				0,75 0,73			

Concrete cone failure	
See	Annex C 4

Splitting failure		
	See Annex C 4	

WCF-EASF-C	
Performances Hammer drilling, Dustless drilling	Annex C 5
Characteristic resistance for tension loads - rebar	

Table C7: Design method EN 1992-4 Characteristic values of resistance to tension load of threaded rod

Combined	pullout and concrete	cone failure in	concrete C20/25
----------	----------------------	-----------------	-----------------

Diamond core drilling										
Size			M8	M10	M12	M16	M20	M24	M27	M30
Characteristic bond resistance in u	ncracked co	ncrete for a	work	ing life	e of 50) year:	s and	100 ye	ears	
Dry and wet concrete	τ _{Rk} ,	ucr [N/mm²]	9,0	8,5	8,5	8,0	7,5	7,0	5,5	4,5
Installation safety factor	γι	nst [-]				1	,0			
Flooded hole	τ _{Rk} ,	ucr [N/mm²]	8,0	7,0	6,5	6,5	6,0	5,0	4,0	3,5
Installation safety factor	γι	nst [-]				1	,4			
Factor for uncracked concrete	C30/37 C40/50 ψ C50/60	; [-]				1,0	04 07 09			
Factor for influence of sustained load for a working life 50 years	ψ ⁰ ,	sus [-]				0,	77			

Factor for concrete cone failure for uncracked concrete	k _{ucr,N}	[-]	11
Edge distance	C _{cr,N}	[mm]	1,5h _{ef}
Splitting failure	•		

Splitting failure										
Size			M8	M10	M12	M16	M20	M24	M27	M30
Edge distance	C _{cr,sp}	[mm]	1,5h _{ef}							
Spacing	S _{cr,sp}	[mm]	3,0h _{ef}							

WCF-EASF, WCF-EASF-C, WCF-EASF-E	
Performances	Annex C 6
Diamond core drilling	, amon o
Characteristic resistance for tension loads - threaded rod	

Appendix 17 of 23

Table C8: Design method EN 1992-4

Characteristic values of resistance to tension load of threaded rod for WCF-EASF-C with installation temperature < -10°C

Combined pullout and concrete cone failure in concrete C20/25

Diamond core drilling											
Size				M8	M10	M12	M16	M20	M24	M27	M30
Characteristic bond resistance in u	ıncracked co	ncre	ete for a	worki	ing life	of 50	years	and	100 ye	ars	
Dry and wet concrete	τ _{Rk} ,	ucr	[N/mm ²]	8,5	8,0	8,0	7,5	7,0	6,5	5,0	4,0
Installation safety factor	γ	inst	[-]				1,	,0			
Flooded hole	$ au_{Rk,}$	ucr	[N/mm ²]	7,5	6,5	6,0	6,0	5,5	4,5	3,5	3,0
Installation safety factor	γ	inst	[-]				1,	4			
Factor for uncracked concrete	C30/37 C40/50 ψ C50/60	С	[-]				1,(1,(1,(07			
Factor for influence of sustained load for a working life 50 years	ψ ⁰	sus	[-]				0,	77			

Concrete cone failure		
	See Annex C 6	

Splitting failure		
	See Annex C 6	

WCF-EASF-C	
Performances	Annex C 7
Diamond core drilling	
Characteristic resistance for tension loads - threaded rod	

Table C9: Design method EN 1992-4

Characteristic values of resistance to tension load of rebar

Combined pullout and concrete cone failure in uncracked concrete C20/25

Diamond core drilling										
Size				Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Characteristic bond resistance in uncracked concrete for a working life of 50 years and 100 years										
Dry and wet concrete	τ _{Rk} ,	ucr [N/r	mm²]	9,0	8,5	8,0	7,5	7,0	6,0	3,0
Installation safety factor	γ	nst	[-]				1,2			
Flooded hole	τ _{Rk} ,	ucr [N/r	mm²]	9,0	8,5	8,0	7,5	7,0	5,5	2,5
Installation safety factor	γ	nst [[-]				1,4			
Factor for uncracked concrete	C30/37 C40/50 C50/60	Ψc [[-]	1,04 1,07 1,09						
Factor for influence of sustained load for a working life 50 years	Ψ^0	sus	[-]				0,77			

Concrete cone failure			
Factor for concrete cone failure	k _{ucr,N}	[-]	11
Edge distance	Ccr,N	[mm]	1,5h _{ef}

Splitting failure									
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Edge distance	C _{cr,sp}	[mm]	1,5h _{ef}						
Spacing	S _{cr,sp}	[mm]	3,0h _{ef}						

Annex C 8

Appendix 19 of 23

Table C10: Design method EN 1992-4

Characteristic values of resistance to tension load of rebar for WCF-EASF-C with installation temperature < -10°C

Combined pullout and concrete cone failure in uncracked concrete C20/25

Diamond core drilling									
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Characteristic bond resistance in uncracked concrete for a working life of 50 years and 100 years									
Dry and wet concrete	$ au_{Rk,uci}$	[N/mm ²]	8,5	8,0	7,5	7,0	6,5	5,5	2,5
Installation safety factor	γins	[-]				1,2			
Flooded hole	τ _{Rk,uci}	[N/mm ²]	8,5	8,0	7,5	7,0	6,5	5,0	2,0
Installation safety factor	γins	[-]				1,4			
Factor for uncracked concrete	C30/37 C40/50 ψα C50/60	[-]	1,04 1,07 1,09						
Factor for influence of sustained load for a working life 50 years	Ψ^0_{sus}	[-]				0,77			

Concrete cone failure		
	See Annex C 8	

Splitting failure		
	See Annex C 8	

WCF-EASF-C	
Performances	Annex C 9
Diamond core drilling	
Characteristic resistance for tension loads - rebar	

Table C11: Design method EN 1992-4
Characteristic values of resistance to shear load of threaded rod

Steel failure without lever arm										
Size			M8	M10	M12	M16	M20	M24	M27	M30
KPG 4.6	$V_{Rk,s}$	[kN]	7	12	17	31	49	71	92	112
Partial safety factor	γMs	[-]				1,	67			
KPG 5.8	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
Partial safety factor	γMs	[-]				1,	25			
KPG 8.8	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
Partial safety factor	γMs	[-]	1,25							
KPG 10.9	$V_{Rk,s}$	[kN]	18	29	42	79	123	177	230	281
Partial safety factor	γMs	[-]	1,5							
KPG A2-70, KPG A4-70	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	161	196
Partial safety factor	γMs	[-]				1,	56			
KPG A4-80	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
Partial safety factor	γMs	[-]				1,	33			
KPG HCR	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	161	196
Partial safety factor	γMs	[-]				1,	25			
KPG UHCR	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	161	196
Partial safety factor	γMs	[-]	1,56							
Characteristic resistance of group of fas	teners									
Ductility factor $k_7 = 1,0$ for steel with r	upture elonga	ation A	> 8%							

Steel failure with lever arm									
Size		M8	M10	M12	M16	M20	M24	M27	M30
KPG 4.6	Mº _{Rk,s} [N.m]	15	30	52	133	260	449	666	900
Partial safety factor	γMs [-]			•	1,	67			
KPG 5.8	Mº _{Rk,s} [N.m]	19	37	66	166	325	561	832	1125
Partial safety factor	γMs [-]				1,	25			
KPG 8.8	Mº _{Rk,s} [N.m]	30	60	105	266	519	898	1332	1799
Partial safety factor	γMs [-]				1,	25			
KPG 10.9	Mº _{Rk,s} [N.m]	37	75	131	333	649	1123	1664	2249
Partial safety factor	γ _{Ms} [-]	1,50							
KPG A2-70, KPG A4-70	Mo _{Rk,s} [N.m]	26	52	92	233	454	786	1165	1574
Partial safety factor	γMs [-]				1,	56			
KPG A4-80	Mº _{Rk,s} [N.m]	30	60	105	266	519	898	1332	1799
Partial safety factor	γMs [-]				1,	33			
KPG HCR	Mº _{Rk,s} [N.m]	26	52	92	233	454	786	1165	1574
Partial safety factor	γMs [-]				1,	25			
KPG UHCR	Mo _{Rk,s} [N.m]	26	52	92	233	454	786	1165	1574
Partial safety factor	γ _{Ms} [-]				1,	56			
Concrete pry-out failure									
Factor for resistance to pry-out failure	k ₈ [-]				2	2			

Concrete edge failure										
Size		M8	M10	M12	M16	M20	M24	M27	M30	
Outside diameter of fastener d _{no}	m [mr	n] [8	10	12	16	20	24	27	30
Effective length of fastener	լ Մ	n]	min (h _{ef} , 8 d _{nom})							

WCF-EASF, WCF-EASF-C, WCF-EASF-E	
Performances Design according to EN 1992-4 Characteristic resistance for shear loads - threaded rod	Annex C 10

Appendix 21 of 23

Table C12: Design method EN 1992-4 Characteristic values of resistance to shear load of rebar

Steel failure without lever arm									
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Rebar BSt 500 S	$V_{Rk,s}$	[kN]	14	22	31	55	86	135	221
Partial safety factor	γMs	[-]	1,5						
Characteristic resistance of group of fasteners									
Ductility factor $k_7 = 1,0$ for steel with rupture e	Ductility factor $k_7 = 1,0$ for steel with rupture elongation $A_5 > 8\%$								

Steel failure with lever arm								
Size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Rebar BSt 500 S	M ^o Rk,s [N.m]	33	65	112	265	518	1013	2122
Partial safety factor	γMs [-]				1,5			
Concrete pry-out failure								
Factor for resistance to pry-out failure	k ₈ [-]				2			

Concrete edge failure									
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Outside diameter of fastener	d_{nom}	[mm]	8	10	12	16	20	25	32
Effective length of fastener	ℓf	[mm]			min	(h _{ef} , 8 c	nom)		

WCF-EASF, WCF-EASF-C, WCF-EASF-E	
Performances	Annex C 11
Design according to EN 1992-4	
Characteristic resistance for shear loads - rebar	

Table C13: Displacement of threaded rod under tension and shear load Hammer drilling, dustless drilling

				<u>J</u> ,					
Size		M8	M10	M12	M16	M20	M24	M27	M30
Tensio	on load								
Uncra	cked cond	rete							
δ_{N0}	[mm/kN]	0,05	0,04	0,03	0,02	0,02	0,02	0,01	0,01
δ _{N∞}	[mm/kN]	0,11	0,09	0,06	0,04	0,03	0,02	0,02	0,02
Crack	ed concre	te							
δνο	[mm/kN]		0,08	0,09	0,05	0,03	0,02		
δ _{N∞}	[mm/kN]		0,51	0,32	0,18	0,13	0,11		
Shear	load								
δν0	[mm/kN]	0,48	0,30	0,20	0,11	0,10	0,08	0,06	0,05
δν∞	[mm/kN]	0,72	0,45	0,30	0,17	0,14	0,12	0,10	0,08

Table C14: Displacement of threaded rod under tension and shear load Diamond core drilling

Size		M8	M10	M12	M16	M20	M24	M27	M30
Tensi	on load								
Uncra	cked cond	rete							
δνο	[mm/kN]	0,02	0,02	0,03	0,02	0,01	0,01	0,02	0,02
δ _{N∞}	[mm/kN]	0,11	0,07	0,05	0,03	0,02	0,02	0,02	0,02
Crack	ed concre	te							
δ_{N0}	[mm/kN]		0,07	0,05	0,05	0,03	0,03		
δ _{N∞}	[mm/kN]		0,37	0,23	0,16	0,10	0,07		
Shear	load								
δ∨0	[mm/kN]	0,48	0,30	0,20	0,11	0,10	0,08	0,06	0,05
δ∨∞	[mm/kN]	0,72	0,45	0,30	0,17	0,14	0,12	0,10	0,08

Table C15: Displacement of rebar under tension and shear load Hammer drilling, dustless drilling

				, ,				
Size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Tensi	on load							
Uncra	cked cond	rete						
δ_{N0}	[mm/kN]	0,04	0,03	0,02	0,02	0,01	0,01	0,01
δ _{N∞}	[mm/kN]	0,09	0,07	0,05	0,03	0,02	0,01	0,01
Shear	load							
δ_{V0}	[mm/kN]	0,05	0,04	0,03	0,02	0,01	0,01	0,01
δ∨∞	[mm/kN]	0,08	0,06	0,05	0,03	0,02	0,01	0,01

Table C16: Displacement of rebar under tension and shear load Diamond core drilling

		unione	1 0010	<u> </u>				
Size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Tensi	on load							
Uncra	cked cond	rete						
δ_{N0}	[mm/kN]	0,04	0,04	0,03	0,02	0,02	0,02	0,02
δ _{N∞}	[mm/kN]	0,10	0,07	0,05	0,03	0,02	0,02	0,02
Shear	load							
δ_{V0}	[mm/kN]	0,05	0,04	0,03	0,02	0,01	0,01	0,01
δ∨∞	[mm/kN]	0,08	0,06	0,05	0,03	0,02	0,01	0,01

WCF-EASF, WCF-EASF-E	
Performances Displacement	Annex C 12

Table C17: Seismic performance category C1 - Hammer drilling, Dustless drilling

Size			M10	M12	M16	M20	M24
Tension load		'			1	ı	
Steel failure							
Characteristic resistance KPG 4.6	$N_{Rk,s,eq}$	[kN]	23	34	63	98	141
Partial safety factor	γMs	[-]			2,00	l.	
Characteristic resistance KPG 5.8	$N_{Rk,s,eq}$	[kN]	29	42	79	123	177
Partial safety factor	γMs	[-]			1,50	l.	
Characteristic resistance KPG 8.8	N _{Rk,s,eq}	[kN]	46	67	126	196	282
Partial safety factor	γMs	[-]			1,50		
Characteristic resistance KPG 10.9	N _{Rk,s,eq}	[kN]	58	84	157	245	353
Partial safety factor	γMs	[-]			1,33		
Characteristic resistance KPG A2-70, KPG A4-70	N _{Rk,s,eq}	[kN]	41	59	110	172	247
Partial safety factor	γMs	[-]			1,87		
Characteristic resistance KPG A4-80	$N_{Rk,s,eq}$	[kN]	46	67	126	196	282
Partial safety factor	γMs	[-]			1,60	l	
Characteristic resistance KPG HCR	$N_{Rk,s,eq}$	[kN]	41	59	110	172	247
Partial safety factor	γMs	[-]			1,50		
Characteristic resistance KPG UHCR	$N_{Rk,s,eq}$	[kN]	41	59	110	172	247
Partial safety factor	γMs	[-]			1,87		
Characteristic resistance to pull-out for a w			ears		, -		
Dry, wet concrete and flooded hole		[N/mm ²]	3,5	3,5	3,5	3,5	3,5
WCF-EASF-C with installation temperature			-,-	-,-	-,-	-,-	-,-
Dry, wet concrete and flooded hole		[N/mm ²]	3,3	3,3	3,3	3,3	3,3
Characteristic resistance to pull-out for a w				,	,	,	
Dry, wet concrete and flooded hole		[N/mm ²]	3,0	3,0	3,0	2,2	2,2
WCF-EASF-C with installation temperature			*		,	,	1
Dry, wet concrete and flooded hole		[N/mm ²]	2,8	2,8	2,8	2,1	2,1
nstallation safety factor – Dry and wet concrete	γinst	[-]			1,2	•	
nstallation safety factor – Flooded hole	γinst	[-]			1,4		
Shear load							
Steel failure without lever arm							
Characteristic resistance KPG 4.6	$V_{Rk,s,eq}$	[kN]	7	10	23	30	40
Partial safety factor	V RK,S,eq γMs	[-]	'	10	1,67	30	+0
Characteristic resistance KPG 5.8	V _{Rk,s,eq}	[kN]	9	13	28	38	51
Partial safety factor		[-]	3	10	1,25	30	J 31
Characteristic resistance KPG 8.8	γMs V _{Rk,s,eq}	[kN]	14	21	45	61	81
Partial safety factor		[-]	14	<u> </u>	1,25	01	01
Characteristic resistance KPG 10.9	γMs V _{Rk,s,eq}	[kN]	18	26	56	76	101
Partial safety factor		[-]	10	20	1,50	70	101
Characteristic resistance KPG A2-70, KPG A4-70	γMs	[kN]	12	18	39	53	71
Partial safety factor	V _{Rk,s,eq}	[-]	14	10	1,56		
Characteristic resistance KPG A4-80	γMs	[kN]	14	21	45	61	81
Partial safety factor	V _{Rk,s,eq}	[-]	14	21	1,33	UI	01
	γMs		12	18	39	53	71
Characteristic resistance KPG HCR Partial safety factor	V _{Rk,s,eq}	[kN]	IΖ	10	1,25	53	/ / 1
	γMs	[-]	10	10		F2	74
Characteristic resistance KPG UHCR Partial safety factor	V _{Rk,s,eq}	[kN]	12	18	39	53	71
·	γMs	[-]			1,56		
Factor for annular gap	$lpha_{\sf gap}$	[-]			0,5		

Note: Rebars are not qualified for seismic design

Trotor repairs and mot quantities for soletime assign	
WCF-EASF, WCF-EASF-C, WCF-EASF-E	
Performances	Annex C 13
Hammer drilling, Dustless drilling	7 timox o 10
Seismic performance category C1	