

Czech Republic eota@tzus.cz

European Technical Assessment

ETA 20/0618 of 01/12/2023

Technical Assessment Body issuing the ETA: Technical and Test Institute

for Construction Prague

Trade name of the construction product WCF-EASF

WCF-EASF-C WCF-EASF-E

Product family to which the construction product belongs

Product area code: 33

Injection anchors for use in masonry

Manufacturer KLIMAS sp. z o.o.

UI.Wincentego Witosa 135/137 Kuźnica

Kiedrzyńska

42-233 Mykanów, POLSKA

Manufacturing plant(s) Plant no. 3

This European Technical Assessment contains

19 pages including 16 Annexes which form

an integral part of this assessment.

This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of

EAD 330076-01-0604

Metal injection anchors for use in masonry

This version replaces

ETA 20/0618 issued on 07/04/2022

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

1. Technical description of the product

The WCF-EASF, WCF-EASF-C (faster curing time) and WCF-EASF-E (extended curing time) for masonry is a bonded anchor consisting of a cartridge with injection mortar, a plastic sieve sleeve and an anchor rod with a hexagon nut and a washer. The steel elements are made of galvanized steel or stainless steel.

The sieve sleeve is pushed into a drilled hole and filled with injection mortar before the anchor rod is placed in the sieve sleeve. The steel element is anchored via the bond between metal part, injection mortar and masonry.

The illustration and the description of the product are given in Annex A.

2. Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Reduction factor for job site tests (β – factor)	See Annex C 1 to C 4
Characteristic resistance	See Annex C 1 to C 4
Edge distances and spacing	See Annex B 6, B 7
Displacements	See Annex C 1 to C 4
Durability	See Annex A 3

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1

3.3 Hygiene, health and environment (BWR 3)

No performance determined.

3.4 General aspects relating to fitness for use

Durability and serviceability are only ensured if the specifications of intended use according to Annex B 1 are kept.

4. Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base

According to the Decision 97/177/EC of the European Commission¹, the system of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table applies.

Product	Intended use	Level or class	System
Injection anchors for	For fixing and/or supporting to		
use in masonry	masonry, structural elements		1 1
	(which contributes to the stability	-	'
	of the works) or heavy units		

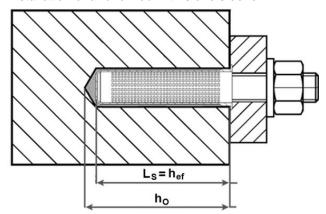
Official Journal of the European Communities L 073 of 14.03.1997

5. Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD

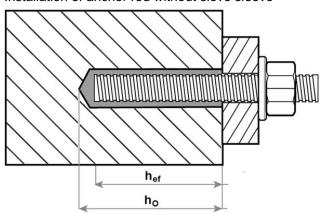
The factory production control shall be in accordance with the control plan which is a part of the technical documentation of this European Technical Assessment. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited at Technický a zkušební ústav stavební Praha, s.p.² The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

Issued in Prague on 01.12.2023

By

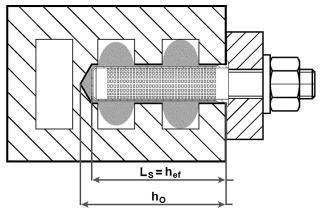

Ing. Jiří Studnička, Ph.D. Head of the Technical Assessment Body

The control plan is a confidential part of the documentation of the European Technical Assessment, but not published together with the ETA and only handed over to the approved body involved in the procedure of AVCP.

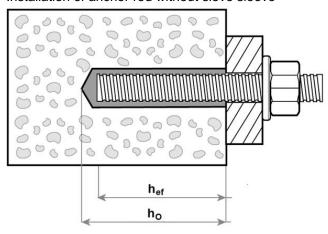

Page 3 of 19 ETA 20/0618 issued on 01/12/2023 and replacing ETA 20/0618 issued on 07/04/2022

Installation in solid brick masonry

Installation of anchor rod with sieve sleeve



Installation of anchor rod without sieve sleeve

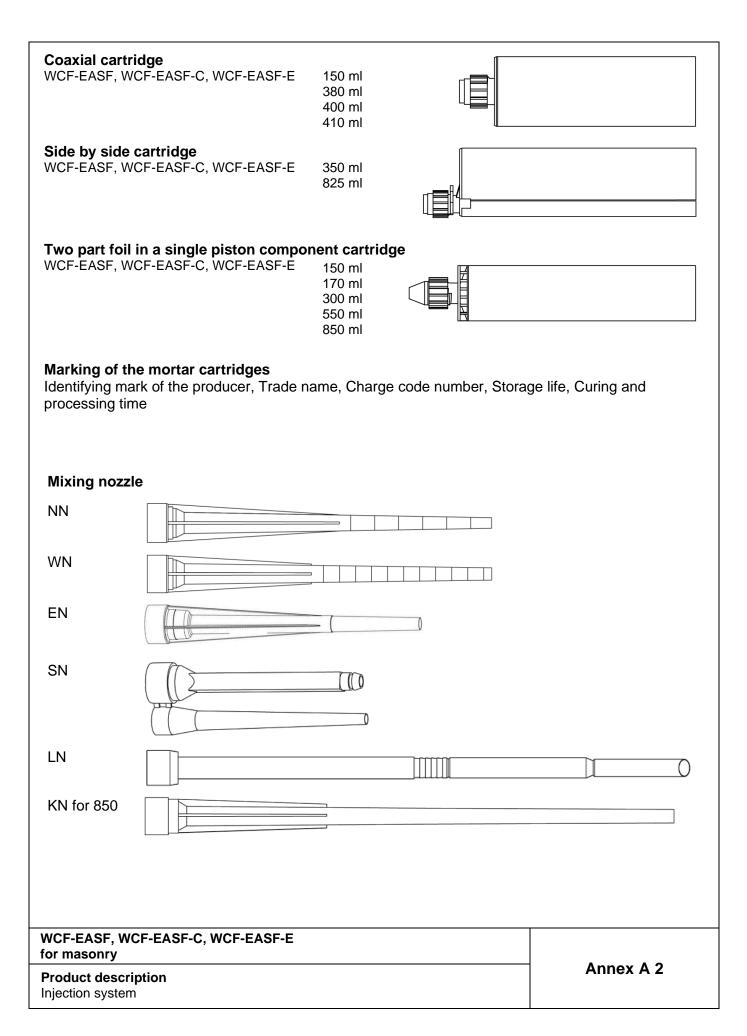

Installation in hollow or perforated brick masonry

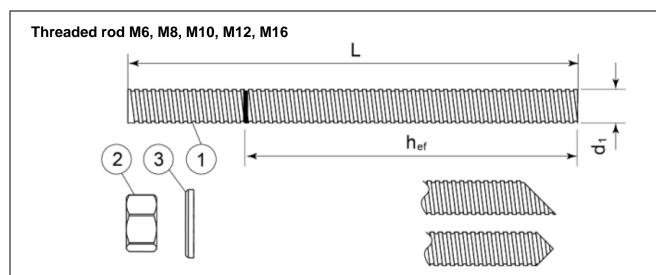
Installation of anchor rod with sieve sleeve

Installation in autoclaved aerated concrete

Installation of anchor rod without sieve sleeve

L_s = length of the sieve sleeve h_{ef} = effective setting depth

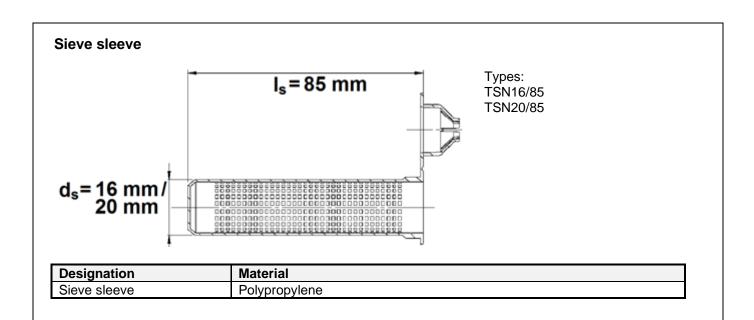

 h_0 = bore hole depth


WCF-EASF, WCF-EASF-C, WCF-EASF-E for masonry

Product description

Installed condition

Annex A 1


Standard commercial threaded rod with marked embedment depth

Part	Designation	Material	
Steel, zinc plated ≥ 5 µm acc. to EN ISO 4042 or Steel, Hot-dip galvanized ≥ 40 µm acc. to EN ISO 1461 and EN ISO 10684 or Steel, zinc diffusion coating ≥ 15 µm acc. to EN 13811 or Steel, zinc flake ≥ 8 µm acc. to EN ISO 2178:2016			
1	Anchor rod	Steel, EN 10087 or EN 10263 KPG 4.6 ¹⁾ , KPG 5.8, KPG 8.8, KPG 10.9 ²⁾ EN ISO 898-1	
2	Hexagon nut EN ISO 4032	According to threaded rod, EN 20898-2	
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod	
Stainl	ess steel		
1	Anchor rod	KPG A2-70, KPG A4-70, KPG A4-80 EN ISO 3506	
2	Hexagon nut EN ISO 4032	According to threaded rod	
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod	
High corrosion resistant steel			
1	Anchor rod	KPG HCR, KPG UHCR EN 10088-1	
2	Hexagon nut EN ISO 4032	According to threaded rod	
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod	

¹⁾ Only for use in Autoclaved aerated concrete

²⁾ Galvanized rod of high strength are sensitive to hydrogen induced brittle failure

WCF-EASF, WCF-EASF-C, WCF-EASF-E for masonry	
Product description Threaded rod and materials	Annex A 3

WCF-EASF, WCF-EASF-C, WCF-EASF-E for masonry	
Product description Sleeve	Annex A 4

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads

Base materials

- Solid brick masonry (Use category b), according to Annex B2.
- Hollow brick masonry (Use category c), according to Annex B2.
- Autoclaved aerated concrete (Masonry group d), according to Annex B3.
- Mortar strength class of the masonry M2,5 at minimum according to EN 998-2:2010.
- For other bricks in solid masonry, hollow or perforated masonry or autoclaved aerated concrete the characteristic resistance of the anchorages may be determined by job site tests according to EOTA Technical Report TR 053 and under consideration of the β-factor to Annex C1, Table C4 or Annex C 2, Table C8.

Note: The characteristic resistance for solid bricks are also valid for larger brick sizes and larger compressive strength of the masonry unit.

Temperature range:

- Ta: -40°C to +40°C (max. short. term temperature +40°C and max. long term temperature +24°C)
- T_b: -40°C to +80°C (max. short. term temperature +80°C and max. long term temperature +50°C)

Use conditions (Environmental conditions)

- (X1) Structures subject to dry, internal conditions (zinc coated steel, stainless steel, high corrosion resistance steel)
- (X2) Structures subject to external atmospheric exposure (including industrial and marine environment) or exposure in permanently damp internal condition, if no particular aggressive conditions exist (stainless steel A4, high corrosion resistant steel)
- (X3) Structures subject to external atmospheric exposure or exposure in permanently damp internal conditions
 or particularly aggressive conditions such as permanent or alternate immersion in seawater or the splash zone
 of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution
 (e.g. in desulfurization plants or road tunnels, where de-icing materials are used)
 (high corrosion resistant steel)

Use categories in respect of installation and use:

- Category d/d Installation and use in structures subject to dry, internal conditions
- Category w/d Installation in dry or wet substrate and use in structures subject to dry, internal conditions
- Category w/w Installation and use in structures subject to dry or wet environmental conditions

Design:

- Verifiable calculation notes and drawings are prepared taking account the relevant masonry in the region of the anchorage, the loads to be transmitted and their transmission to the supports of the structure. The position of the anchor is indicated on the design drawings.
- The anchorage are designed in accordance with the EOTA Technical Report TR 054, Design method A,, under the responsibility of an engineer experienced in anchorages and masonry work.

Installation:

- Dry or wet structures
- Anchor Installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

WCF-EASF, WCF-EASF-C, WCF-EASF-E for masonry	
Intended use Specifications	Annex B 1

Table B1: Types and dimensions of block and bricks

Brick N° 1

Hollow clay brick Hueco Doble according to EN 771-1 length/width/height = 245 mm / 110 mm / 88 mm $f_b \ge 2.5 \text{ N/mm}^2$ / $\rho \ge 0.74 \text{ kg/dm}^3$

Brick N° 2

Hollow clay brick Porotherm P+W according to EN 771-1 length/width/height = 373 mm/250 mm/238 mm $f_b \ge 12 \text{ N/mm}^2 / \rho \ge 0.9 \text{ kg/dm}^3$

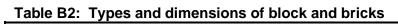
Brick N° 3

Solid clay brick Mz-NF according to EN 771-1 length/width/height = 240 mm / 115 mm / 71 mm $f_b \ge 20 \text{ N/mm}^2 / \rho \ge 1,9 \text{ kg/dm}^3$

Brick N° 4

Solid calcium silicate brick KSV-NF according to EN 771-2 length/width/height = 240 mm / 115 mm / 71 mm $f_b \geq 25 \ N/mm^2 \ / \ \rho \geq 1.8 \ kg/dm^3$

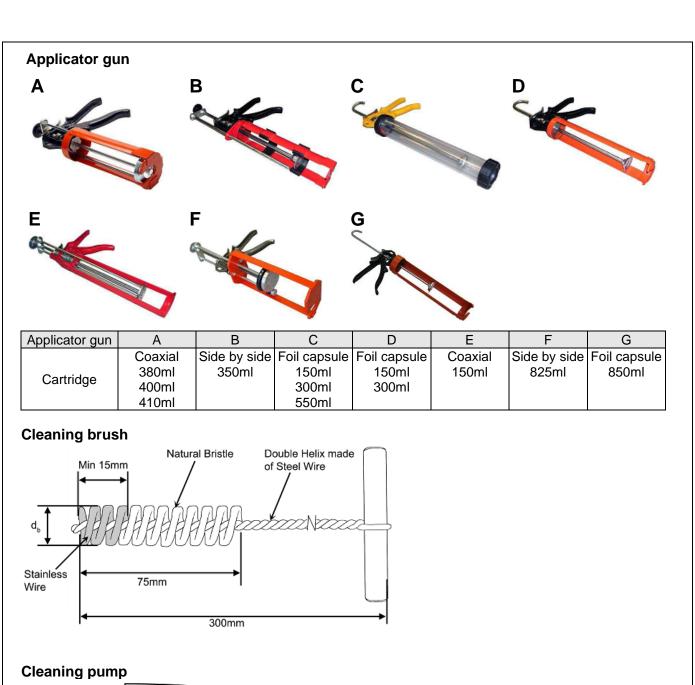
Brick N° 5

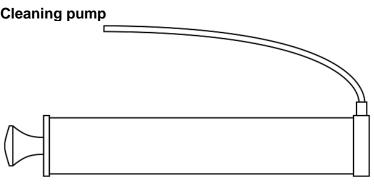


Perforated calcium silicate brick KSL-R-12-1,2-16DF according to EN 771-2 length/width/height = 239 mm / 248 mm / 239 mm $f_b \ge 15 \text{ N/mm}^2 / \rho \ge 1,3 \text{ kg/dm}^3$

WCF-EASF, WCF-EASF-C, WCF-EASF-E for masonry

Intended useBrick types and properties


Annex B 2



Brick No.	Strength class acc. to EN 771-4	L/W/H (mm)	f _b (N/mm²)	ρ (kg/dm³)
N° 6	Autoclaved aerated concrete AAC2	599/375/249	≥ 2,0	(kg/diff) ≥ 0,35
N° 7	Autoclaved aerated concrete AAC3	599/375/249	≥ 3,0	≥ 0,40
N° 8	Autoclaved aerated concrete AAC4	599/375/249	≥ 4,0	≥ 0,50
N° 9	Autoclaved aerated concrete AAC5	599/375/249	≥ 5,0	≥ 0,60
N° 10	Autoclaved aerated concrete AAC6	499/240/250	≥ 6,0	≥ 0,65

WCF-EASF, WCF-EASF-C, WCF-EASF-E for masonry	
Intended use Brick types and properties	Annex B 3

WCF-EASF, WCF-EASF-C, WCF-EASF-E for masonry	
Intended use	Annex B 4
Applicator guns	
Cleaning brush, Cleaning pump	

Installation instructions			
	Drill the hole to the correct diameter and depth using a rotary percussive machine.	2x	2. Use the cleaning pump to clean the hole.
2×	3. Use the cleaning brush to clean the hole. Diameter of cleaning brush according to Table B3, B5 or B7.	2×	4. Use the cleaning pump to clean the hole.
2×	5. Use the cleaning brush to clean the hole. Diameter of cleaning brush according to Table B3, B5 or B7.	2x	6. Use the cleaning pump to clean the hole.
(-	7. If use in hollow or perforated brick masonry: Plug the centering cap and insert the correct perforated sleeve flush with the surface of the base material.		8. Once the hole is prepared remove the screw cap from the cartridge.
	9 . Attach the mixer nozzle and place the cartridge in the applicator gun.	2x	10. Dispense the first part to waste, until an even colour is achieved.
	11. Remove any free water from the hole.		12. Insert the nozzle to the far end of the hole (using extension tubing if necessary) and inject the resin, withdrawing the nozzle/tube as the hole fills.
	13. If use in hollow or perforated brick masonry: Insert mixer nozzle to the end of the perforated sleeve and completely fill the sleeve with resin. Withdraw the mixer nozzle as the sleeve fills.		14. Immediately insert the fixing (steel element) slowly and with a slight twisting motion. Remove excess resin from around the mouth of the hole.
	15. Leave the fixing undisturbed until the cure time (see Table B9) has elapsed.		16. Attach the fixture and tighten the nut. Maximum installation torque moment according to Table B3, B5 or B7.

WCF-EASF, WCF-EASF-C, WCF-EASF-E for masonry	
Intended use Installation instructions	Annex B 5

Table B3: Installation parameters in solid or hollow masonry with sleeve

Anchor type	Anchor rod with sleeve						
Size			M8	M10	M	12	M16
Sieve sleeve	Is	[mm]	85	85	8	5	85
Sieve Sieeve	ds	[mm]	16	16	16	20	20
Nominal drill hole diameter	d_0	[mm]	16	16	16	20	20
Diameter of cleaning brush	d_b	[mm]	20 ^{±1}	20 ^{±1}	20 ^{±1}	22 ^{±1}	22 ^{±1}
Depth of the drill hole	h_0	[mm]	90				
Effective anchorage depth	h _{ef}	[mm]	85				
Diameter of clearance hole in the fixture	d _f ≤	[mm]	9	12	1	4	18
Torque moment	T _{inst} ≤	[Nm]	2				

Table B4: Edge distances and spacing in solid or hollow masonry with sleeve

Anchor rod								
		M8, M10, M12 ²)	M12 ³⁾ , M16				
Base material ¹⁾	Ccr = Cmin	Scr II = Smin II	ScrL = SminL	Ccr = Cmin	Scr II = Smin II	ScrL = Smin-L		
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]		
Brick N° 1	100	245	110	120	245	110		
Brick N° 2	100	373	238	120	373	238		
Brick N° 3	128	255	255	128	255	255		
Brick N° 4	128	255	255	125	255	255		
Brick N° 5	100	239	248	120	239	248		

¹⁾ Brick N° according to Annex B 2

Table B5: Installation parameters in solid masonry without sleeve

				,			
Anchor type				Anchor	rod withou	t sleeve	
Size			M6	M8	M10	M12	M16
Nominal drill hole diameter	d ₀	[mm]	8	10	12	14	18
Diameter of cleaning brush	dь	[mm]	9 ^{±1}	14 ^{±1}	14 ^{±1}	14 ^{±1}	20 ^{±1}
Depth of the drill hole	h ₀	[mm]	80	90			
Effective anchorage depth	h _{ef}	[mm]	80	90			
Diameter of clearance	d _f ≤	[mm]	7	9	12	14	18
hole in the fixture	u _f ≥	[mm]	1	9	12	14	10
Torque moment	T _{inst} ≤	[Nm]			2		

Table B6: Edge distances and spacing in solid masonry without sleeve

	Table 201 Lage alletaness and spacing in contaminationly initioal closes								
	Anchor rod								
	M6			M8, M10, M12, M16					
Base material ¹⁾	Ccr = Cmin	Scr II = Smin II	Scrl = Smin ^L	Ccr = Cmin	Scr II = Smin II	Scrl = Smin ^L			
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]			
Brick N° 3	120	240	240	135	270	270			
Brick N° 4	120	240	240	135	270	270			

¹⁾ Brick N° according to Annex B 2

WCF-EASF, WCF-EASF-C, WCF-EASF-E for masonry	
Intended use Installation parameters	Annex B 6

²⁾ M12 with sleeve TSN16/85

³⁾ M12 with sleeve TSN20/85

Table B7: Installation parameters in autoclaved aerated concrete

Base material				Е	3rick No. 6 - 1	0			
Anchor type				Anchor rod					
				,	without sleeve	9			
Size			M6	M8	M10	M12	M16		
Nominal drill hole diameter	d ₀	[mm]	8	10	12	14	18		
Diameter of	d.	[mm]	9±1	14 ^{±1}	14 ^{±1}	20 ^{±1}	20 ^{±1}		
cleaning brush	dь	[iiiiii]	9	14	14	20	20		
Depth of the drill hole	h_0	[mm]		80		95	105		
Effective anchorage depth	hef	[mm]		75		90	100		
Diameter of clearance hole in the fixture	d _f ≤	[mm]	7	9	12	14	18		
Torque moment	T _{inst} ≤	[Nm]			2	•			

Table B8: Edge distances and spacing autoclaved aerated concrete

Anchor rod										
	M6, M8, M10				M12			M16		
Base material ¹⁾	C _{cr} = C _{min}	Scr II = Smin II	S _{cr} ⊥ = S _{min} ⊥	C _{cr} = C _{min}	Scr = Smin	Scr⊥ = Smin⊥	C _{cr} = C _{min}	Scr II = Smin II	S _{cr} ⊥ = S _{min} ⊥	
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	
Brick N°6	113	225	225	135	270	270	150	300	300	
Brick N°7	113	225	225	135	270	270	150	300	300	
Brick N°8	113	225	225	135	270	270	150	300	300	
Brick N°9	113	225	225	135	270	270	150	300	300	
Brick N°10	113	225	225	135	270	270	150	300	300	

¹⁾ Brick N° according to Annex B 3

WCF-EASF, WCF-EASF-E for masonry	
Intended use Installation parameters	Annex B 7

Table B9: Minimum curing time

WCF-EASF			
Resin cartridge temperature [°C]	T Work [mins]	Base material Temperature [°C]	T Load [mins]
+10	30 mins	-10 to -5	24 hours
+5	20 mins	-5 to 0	300 mins
0 to +5	15 mins	0 to +5	210 mins
+5 to +10	10 mins	+5 to +10	145 mins
+10 to +15	8 mins	+10 to +15	85 mins
+15 to +20	6 mins	+15 to +20	75 mins
+20 to +25	5 mins	+20 to +25	50 mins
+25 to +30	4 mins	+25 to +30	40 mins

WCF-EASF-C			
Resin cartridge temperature [°C]	T Work [mins]	Base material Temperature [°C]	T Load [mins]
+20	40 mins	-20 to -15 ¹⁾	24 hours
+20	30 mins	-15 to -10 ¹⁾	18 hours
+5	20 mins	-10 to -5	12 hours
+5	15 mins	-5 to 0	100 mins
0 to +5	10 mins	0 to +5	75 mins
+5 to +20	5 mins	+5 to +20	50 mins
+20	100 second	+20	20 mins

¹⁾ characteristic values of resistance see Annex C 2 and C 4

WCF-EASF-E			
Resin cartridge temperature [°C]	T Work [mins]	Base material Temperature [°C]	T Load [mins]
+15 to +20	15 mins	+15 to +20	5 hours
+20 to +25	10 mins	+20 to +25	145 mins
+25 to +30	7.5 mins	+25 to +30	85 mins
+30 to +35	5 mins	+30 to +35	50 mins
+35 to +40	3.5 mins	+35 to +40	40 mins

T work is typical gel time at highest temperature T load is set at the lowest temperature

WCF-EASF, WCF-EASF-C, WCF-EASF-E for masonry	
Intended use Working and curing time	Annex B 8

Table C1: Characteristic resistance under tension and shear loading

Base material	Δ	Anchor rods with sleeve $N_{Rk} = V_{Rk} [kN]^{1}$					Anchor rods without sleeve N _{Rk} = V _{Rk} [kN] 1)					
	M8	M10	M12	M12	M16	M6	M8	M10	M12	M16		
Sleeve	16/85	16/85	16/85	20/85	20/85							
Brick N° 1	0,9	1,5	1,5	1,5	1,5							
Brick N° 2	2,0	2,0	2,0	2,5	2,5							
Brick N° 3	3,0	3,0	3,0	3,0	3,0	3,5	4,0	5,0	3,5	4,5		
Brick N° 4	3,0	3,0	3,0	3,0	3,0	6,0	7,0	8,0	5,5	8,0		
Brick N° 5	2,0	2,0	2,0	2,5	2,5					_		

¹⁾ For design according TR 054: $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,s}$; $N_{Rk,pb}$ according to TR 054 For $V_{Rk,s}$ see Annex C1, Table C2; Calculation of $V_{Rk,pb}$ and $V_{Rk,c}$ according to TR 054

Table C2: Characteristic resistance under shear loading - steel failure

Table CZ. Characteristic resist	ance under sile	ai ioa	anng –	Steel	ianuie	•		
Size			М6	М8	M10	M12	M16	Partial safety factor
Characteristic shear resistance								γMs
KPG 5.8	V _{Rk,s}	[kN]	5	9	15	21	39	1,25
KPG 8.8	$V_{Rk,s}$	[kN]	8	15	23	34	63	1,25
KPG 10.9	$V_{Rk,s}$	[kN]	10	18	29	42	79	1,50
KPG A2-70, KPG A4-70	$V_{Rk,s}$	[kN]	7	13	20	30	55	1,56
KPG A4-80	$V_{Rk,s}$	[kN]	8	15	23	34	63	1,33
KPG HCR	$V_{Rk,s}$	[kN]	7	13	20	30	55	1,25
KPG UHCR	$V_{Rk,s}$	[kN]	7	13	20	30	55	1,56
Characteristic bending moment	·							_
KPG 5.8	M _{Rk,s}	[N.m]	8	19	37	66	166	1,25
KPG 8.8	$M_{Rk,s}$	[N.m]	12	30	60	105	266	1,25
KPG 10.9	$M_{Rk,s}$	[N.m]	15	37	75	131	333	1,50
KPG A2-70, KPG A4-70	M _{Rk,s}	[N.m]	11	26	52	92	233	1,56
KPG A4-80	$M_{Rk,s}$	[N.m]	12	30	60	105	266	1,33
KPG HCR	$M_{Rk,s}$	[N.m]	11	26	52	92	233	1,25
KPG UHCR	M _{Rk,s}	[N.m]	11	26	52	92	233	1,56

Table C3: Displacements under tension and shear load

Base material	F [kN]		With s	sleeve		Without sleeve			
		δ _{N0} [mm]	δ _{N∞} [mm]	δ _{V0} [mm]	δ _{V∞} [mm]	δ _{N0} [mm]	δ _{N∞} [mm]	δ _{V0} [mm]	δ _{ν∞} [mm]
Hollow clay brick	N _{Rk} / (1,4 · γ _M)	0,5	1,0	1,0 1)	1,5 ¹⁾				
Solid clay brick	N_{Rk} / (1,4 · γ_{M})	0,06	0,12	0,7 1)	1,0 ¹⁾	0,3	0,6	0,7	1,1
Solid calcium silicate brick	N _{Rk} / (1,4 · γ _M)	0,12	0,24	0,9 1)	1,4 ¹⁾	0,3	0,5	0,8	1,3
Perforated calcium silicate brick	N _{Rk} / (1,4 · γ _M)	0,1	0,2	0,9 1)	1,4 ¹⁾				

¹⁾ the hole gap between bolt and fixture shall be considered additionally

Table C4: β - factors for job site tests according to TR 053

Brick N°	N° 1	N° 2	N° 3	N° 4	N° 5
β - factor	0,78	0,83	0,85	0,85	0,85

WCF-EASF, WCF-EASF-C, WCF-EASF-E for masonry	
Performances	Annex C 1
Characteristic resistance, displacement	
β-factors for job site testing under tension load	

Table C5: Characteristic resistance under tension and shear loading WCF-EASF-C with installation temperature < -10°C

Base material	Δ	Anchor rods with sleeve $N_{Rk} = V_{Rk} [kN]^{1}$				An		ds with = V _{Rk} [kl	out slee N] ¹⁾	ve
	M8	M10	M12	M12	M16	М6	M8	M10	M12	M16
Sleeve	16/85	16/85	16/85	20/85	20/85					
Brick N° 1	0,9	1,5	1,5	1,5	1,5					
Brick N° 2	2,0	2,0	2,0	2,5	2,5					
Brick N° 3	3,0	3,0	3,0	3,0	3,0	3,0	4,0	5,0	3,5	4,5
Brick N° 4	3,0	3,0	3,0	3,0	3,0	6,0	7,0	7,5	5,5	7,5
Brick N° 5	2,0	2,0	2,0	2,5	2,5					

¹⁾ For design according TR 054: N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,s}; N_{Rk,pb} according to TR 054 For V_{Rk,s} see Annex C1, Table C2; Calculation of V_{Rk,pb} and V_{Rk,c} according to TR 054

Table C6: Characteristic resistance under shear loading - steel failure

Table 00. Offaracteristic resistance under silear load	anng	Jicci	ianaic			
Size	M6	M8	M10	M12	M16	Partial safety factor
						γMs
See Annex C	1					

Table C7: Displacements under tension and shear load

Base material	F [kN]		With s	sleeve		Without sleeve				
		δ _{N0} [mm]	δ _{N∞} [mm]	δ _{v0} [mm]	δ _{V∞} [mm]	δ _{N0} [mm]	δ _{N∞} [mm]	δ _{v0} [mm]	δ _{ν∞} [mm]	
	See A	Annex C								

¹⁾ the hole gap between bolt and fixture shall be considered additionally

Table C8: β - factors for job site tests according to TR 053 WCF-EASF-C with installation temperature < -10°C

Brick N°	N° 1	N° 2	N° 3	N° 4	N° 5
β - factor	0,74	0,79	0,81	0,81	0,81

WCF-EASF-C for masonry	
Performances	Annex C 2
Characteristic resistance, displacement	
β-factors for job site testing under tension load	

Table C9: Characteristic resistance under tension and shear loading

Door meterial		Anchor rods N _{Rk} = V _{Rk} [kN] ¹⁾									
Base material		Use c	onditio	ns d/d		Use	condit	ions w	/d and w/w		
	M6	M8	M10	M12	M16	M6	M8	M10	M12	M16	
Brick N° 6	0,9	0,9	0,9	0,9	2,0	0,75	0,75	0,75	0,9	1,5	
Brick N° 7	0,9	1,5	1,5	2,0	3,0	0,9	1,2	1,2	1,5	2,5	
Brick N° 8	1,2	2,5	2,5	3,0	4,0	0,9	2,0	2,0	2,5	3,0	
Brick N° 9	1,5	3,0	3,0	4,0	5,0	1,2	2,5	2,5	3,5	4,0	
Brick N° 10	1,5	4,0	4,0	5,0	6,0	1,2	3,0	3,0	4,0	4,5	

¹⁾ For design according TR 054: $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,s}$; $N_{Rk,pb}$ according to TR 054 For $V_{Rk,s}$ see Annex C 3, Table C10; Calculation of $V_{Rk,pb}$ and $V_{Rk,c}$ according to TR 054

Table C10: Characteristic resistance under shear loading – steel failure

Table C10: Characteristic resista	ance under s	shear	loadii	ng – s	teel ta	ailure		
Size			M6	M8	M10	M12	M16	Partial safety factor
Characteristic shear resistance				ı		ı	ı	1
KPG 4.6	$V_{Rk,s}$	[kN]	4	7	12	17	31	1,67
KPG 5.8	$V_{Rk,s}$	[kN]	5	9	15	21	39	1,25
KPG 8.8	$V_{Rk,s}$	[kN]	8	15	23	34	63	1,25
KPG 10.9	$V_{Rk,s}$	[kN]	10	18	29	42	79	1,50
KPG A2-70, KPG A4-70	$V_{Rk,s}$	[kN]	7	13	20	30	55	1,56
KPG A4-80	$V_{Rk,s}$	[kN]	8	15	23	34	63	1,33
KPG HCR	$V_{Rk,s}$	[kN]	7	13	20	30	55	1,25
KPG UHCR	$V_{Rk,s}$	[kN]	7	13	20	30	55	1,56
Characteristic bending moment								
KPG 4.6	$M_{Rk,s}$	[N.m]	6	15	30	52	133	1,67
KPG 5.8	$M_{Rk,s}$	[N.m]	8	19	37	66	166	1,25
KPG 8.8	$M_{Rk,s}$	[N.m]	12	30	60	105	266	1,25
KPG 10.9	$M_{Rk,s}$	[N.m]	15	37	75	131	333	1,50
KPG A2-70, KPG A4-70	$M_{Rk,s}$	[N.m]	11	26	52	92	233	1,56
KPG A4-80	$M_{Rk,s}$	[N.m]	12	30	60	105	266	1,33
KPG HCR	$M_{Rk,s}$	[N.m]	11	26	52	92	233	1,25
KPG UHCR	$M_{Rk,s}$	[N.m]	11	26	52	92	233	1,56

Table C11: Displacements under tension and shear load

Size			M6	M8	M10	M12	M16
			IVIO				IVI I O
Load	F	[kN]	$N_{Rk} / (1,4 \cdot \gamma_M)$				
	δηο	[mm]	0,27	0,24	0,32	0,39	0,96
AAC2	δ _{N∞}	[mm]	0,54	0,49	0,64	0,78	1,92
AACZ	δνο	[mm]	0,25	0,42	0,16	0,18	0,31
	δν∞	[mm]	0,38	0,62	0,23	0,27	0,46
	διο	[mm]	0,64	0,24	0,32	0,39	0,96
A A C 4	$\delta_{N^{\infty}}$	[mm]	1,28	0,49	0,64	0,78	1,92
AAC4	δνο	[mm]	0,32	0,73	0,54	0,29	0,32
	δν∞	[mm]	0,47	1,09	0,81	0,44	0,48
	δηο	[mm]	0,64	0,06	0,09	0,10	0,05
AAC6	δ _{N∞}	[mm]	1,28	0,12	0,18	0,21	0,11
	δνο	[mm]	0,32	0,73	0,54	0,29	0,32
	δν∞	[mm]	0,47	1,09	0,81	0,44	0,48

¹⁾ the hole gap between bolt and fixture shall be considered additionally

Table C12: β - factors for job site tests according to TR 053

table end production for Job enterteets according to the est								
Brick N°	N° 6	N° 7	N° 8	N° 9	N° 10			
β - factor - Use conditions d/d	0,98	0,98	0,98	0,98	0,98			
β - factor - Use conditions d/w and w/w	0,78	0,78	0,78	0,78	0,78			

WCF-EASF, WCF-EASF-C, WCF-EASF-E for masonry	
Performances	Annex C 3
Characteristic resistance, displacement	
β-factors for job site testing under tension load	

Table C13: Characteristic resistance under tension and shear loading WCF-EASF-C with installation temperature < -10°C

Wor-Last -c with installation temperature < -10 c										
Dana material	Anchor rods N _{Rk} = V _{Rk} [kN] 1)									
Base material	Use conditions d/d Use conditions w/d and							w/w		
	M6	M8	M10	M12	M16	M6	M8	M10	M12	M16
Brick N° 6	0,75	0,9	0,9	0,9	2,0	0,6	0,75	0,75	0,9	1,5
Brick N° 7	0,9	1,5	1,5	2,0	3,0	0,75	1,2	1,2	1,5	2,0
Brick N° 8	1,2	2,0	2,5	3,0	3,5	0,9	1,5	2,0	2,5	3,0
Brick N° 9	1,2	3,0	3,0	4,0	4,5	0,9	2,5	2,5	3,0	3,5
Brick N° 10	1,5	3,5	4,0	5,0	5,5	1,2	3,0	3,0	4,0	4,5

¹⁾ For design according TR 054: $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,s}$; $N_{Rk,pb}$ according to TR 054 For $V_{Rk,s}$ see Annex C 3, Table C10; Calculation of $V_{Rk,pb}$ and $V_{Rk,c}$ according to TR 054

Table C14: Characteristic resistance under shear loading – steel failure

Table of It Gilarastoriotis recictarios arraer cricar	·	9					
Size	М6	M8	M10	M12	M16	Partial safety factor	
0.10						γMs	
See Anno	ex C 3						

Table C15: Displacements under tension and shear load

Size	М6	M8	M10	M12	M16
See Annex C 3	•		•	•	•

¹⁾ the hole gap between bolt and fixture shall be considered additionally

Table C16: β - factors for job site tests according to TR 053 WCF-EASF-C with installation temperature < -10°C

Brick N°	N° 6	N° 7	N° 8	N° 9	N° 10
β - factor - Use conditions d/d	0,95	0,95	0,95	0,95	0,95
β - factor - Use conditions d/w and w/w	0,74	0,74	0,74	0,74	0,74

WCF-EASF-C for masonry	
Performances	Annex C 4
Characteristic resistance, displacement	
β-factors for job site testing under tension load	